(Q, T)-affine-periodic solutions and Pseudo (Q, T affine-periodic solutions for Dynamic Equations on Time Scales

被引:1
作者
Guo, Ruichao [1 ]
Jiang, Xiaomeng [2 ]
Wang, Hongren [3 ]
机构
[1] Jilin Univ Finance & Econ, Sch Appl Math, Changchun 130117, Jilin, Peoples R China
[2] Jilin Univ, Coll Math, Changchun 130012, Jilin, Peoples R China
[3] Jilin Normal Univ, Coll Math, Siping 136000, Jilin, Peoples R China
关键词
EXPONENTIAL DICHOTOMY; STABILITY QUESTION; EXISTENCE; SYSTEMS;
D O I
10.1155/2022/6874460
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to study the existence of (Q, T)-affine-periodic solutions for affine-periodic systems on time scales of the type x(Delta) (t) = A (t)x (t) + f (t) and x(Delta) (t) = A (t)x (t) + g (t, x (t)), t is an element of T, assuming that corresponding homogeneous equation of this system admits exponential dichotomy. The result is also extended to the case of pseudo (Q, T)-affine-periodic solutions. The main approaches are based on the Banach contraction mapping principle, but certain technical aspects on time scales are more complicated.
引用
收藏
页数:10
相关论文
共 38 条
[1]   Existence results for periodic solutions of integro-dynamic equations on time scales [J].
Adivar, Murat ;
Raffoul, Youssef N. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2009, 188 (04) :543-559
[2]  
[Anonymous], 2000, Finance Stoch
[3]  
[Anonymous], 1974, Almost Periodic Differential Equations
[4]   An application of time scales to economics [J].
Atici, FM ;
Biles, DC ;
Lebedinsky, A .
MATHEMATICAL AND COMPUTER MODELLING, 2006, 43 (7-8) :718-726
[5]   Periodic solutions of functional dynamic equations with infinite delay [J].
Bi, Li ;
Bohner, Martin ;
Fan, Meng .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (05) :1226-1245
[6]   Asymptotic behavior of dynamic equations on time scales [J].
Bohner, M ;
Lutz, DA .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2001, 7 (01) :21-50
[7]  
Bohner M., 2001, Dynamic Equations on Time Scales: An Introduction with Applications, DOI DOI 10.1007/978-1-4612-0201-1
[8]  
Bohner M., 2003, Advances in Dynamic Equations on Time Scales: An Introduction with Applications, DOI DOI 10.1007/978-0-8176-8230-9
[9]   Fite-Hille-Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments [J].
Bohner, Martin ;
Hassan, Taher S. ;
Li, Tongxing .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2018, 29 (02) :548-560
[10]   Kamenev-type criteria for nonlinear damped dynamic equations [J].
Bohner Martin ;
Li TongXing .
SCIENCE CHINA-MATHEMATICS, 2015, 58 (07) :1445-1452