ON COPURE PROJECTIVE MODULES AND COPURE PROJECTIVE DIMENSIONS

被引:25
作者
Fu, Xianhui [1 ]
Zhu, Haiyan [2 ]
Ding, Nanqing [3 ]
机构
[1] NE Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[2] Zhejiang Univ Technol, Dept Math, Hangzhou, Zhejiang, Peoples R China
[3] Nanjing Univ, Dept Math, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Copure projective dimension; n-Copure projective module; (Pre)Cover; (Pre)Envelope; Strongly copure projective module; COHERENT RINGS; TORSION-FREE; FLAT COVERS; GORENSTEIN;
D O I
10.1080/00927872.2010.531337
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be any ring. A right R-module M is called n-copure projective if Ext(1) (M, N) = 0 for any right R-module N with fd(N) <= n, and M is said to be strongly copure projective if Ext(i) (M, F) = 0 for all flat right R-modules F and all i >= 1. In this article, firstly, we present some general properties of n-copure projective modules and strongly copure projective modules. Then we define and investigate copure projective dimensions of modules and rings. Finally, more properties and applications of n-copure projective modules, strongly copure projective modules and copure projective dimensions are given over coherent rings with finite self-FP-injective dimension.
引用
收藏
页码:343 / 359
页数:17
相关论文
共 30 条
[1]  
Anderson F. W., 1974, Rings and Categories of Modules
[2]  
Bass H., 1960, T AM MATH SOC, V95, P466, DOI 10.1090/S0002-9947-1960-0157984-8
[3]   All modules have flat covers [J].
Bican, L ;
El Bashir, R ;
Enochs, E .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 :385-390
[4]   FLAT AND PROJECTIVE CHARACTER MODULES [J].
CHEATHAM, TJ ;
STONE, DR .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 81 (02) :175-177
[5]   P-projective modules [J].
Chen, JL .
COMMUNICATIONS IN ALGEBRA, 1996, 24 (03) :821-831
[6]   RINGS WHICH HAVE FLAT INJECTIVE MODULES [J].
COLBY, RR .
JOURNAL OF ALGEBRA, 1975, 35 (1-3) :239-252
[7]   STRONGLY GORENSTEIN FLAT MODULES [J].
Ding, Nanqing ;
Li, Yuanlin ;
Mao, Lixin .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 86 (03) :323-338
[8]   On copure flat modules and flat resolvents [J].
Ding, NQ ;
Chen, JL .
COMMUNICATIONS IN ALGEBRA, 1996, 24 (03) :1071-1081
[9]   THE FLAT DIMENSIONS OF INJECTIVE-MODULES [J].
DING, NQ ;
CHEN, JL .
MANUSCRIPTA MATHEMATICA, 1993, 78 (02) :165-177
[10]   Gorenstein flat covers of modules over Gorenstein rings [J].
Enochs, E ;
Xu, JZ .
JOURNAL OF ALGEBRA, 1996, 181 (01) :288-313