共 50 条
Charge mobility calculation of organic semiconductors without use of experimental single-crystal data
被引:18
作者:
Ishii, Hiroyuki
[1
]
Obata, Shigeaki
[2
,3
]
Niitsu, Naoyuki
[4
,5
]
Watanabe, Shun
[4
,5
,6
]
Goto, Hitoshi
[2
,3
,7
]
Hirose, Kenji
[1
]
Kobayashi, Nobuhiko
[1
]
Okamoto, Toshihiro
[4
,5
,6
]
Takeya, Jun
[4
,5
,8
]
机构:
[1] Univ Tsukuba, Fac Pure & Appl Sci, Dept Appl Phys, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058573, Japan
[2] Toyohashi Univ Technol, Educ Programs Adv Simulat Engn, 1-1 Hibarigaoka,Tempaku Cho, Toyohashi, Aichi 4418580, Japan
[3] CONFLEX Corp, Minato Ku, Shinagawa Ctr Bldg 6F,3-23-17 Takanawa, Tokyo 1080074, Japan
[4] Univ Tokyo, Mat Innovat Res Ctr MIRC, Grad Sch Frontier Sci, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778561, Japan
[5] Univ Tokyo, Dept Adv Mat Sci, Grad Sch Frontier Sci, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778561, Japan
[6] JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan
[7] Toyohashi Univ Technol, Dept Comp Sci & Engn, 1-1 Hibarigaoka,Tempaku Cho, Toyohashi, Aichi 4418580, Japan
[8] Natl Inst Mat Sci NIMS, Int Ctr Mat Nanoarchitecton, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
关键词:
STRUCTURE PREDICTION;
TRANSPORT PARAMETERS;
INHERENT STRUCTURES;
POWDER DIFFRACTION;
CARRIER MOBILITY;
ENERGY;
FIELD;
PERFORMANCE;
LANDSCAPES;
POLYMORPHISM;
D O I:
10.1038/s41598-020-59238-2
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Prediction of material properties of newly designed molecules is a long-term goal in organic electronics. In general, it is a difficult problem, because the material properties are dominated by the unknown packing structure. We present a practical method to obtain charge transport properties of organic single crystals, without use of experimental single-crystal data. As a demonstration, we employ the promising molecule C-10-DNBDT. We succeeded in quantitative evaluation of charge mobility of the single crystal using our quantum wave-packet dynamical simulation method. Here, the single-crystal data is computationally obtained by searching possible packing structures from structural formula of the molecule. We increase accuracy in identifying the actual crystal structure from suggested ones by using not only crystal energy but also similarity between calculated and experimental powder X-ray diffraction patterns. The proposed methodology can be a theoretical design technique for efficiently developing new high-performance organic semiconductors, since it can estimate the charge transport properties at early stage in the process of material development.
引用
收藏
页数:10
相关论文
共 50 条