Modifying an Insect Cell N-Glycan Processing Pathway Using CRISPR-Cas Technology

被引:33
作者
Mabashi-Asazuma, Hideaki [1 ]
Kuo, Chu-Wei [2 ]
Khoo, Kay-Hooi [2 ]
Jarvis, Donald L. [1 ,3 ]
机构
[1] Univ Wyoming, Dept Mol Biol, Laramie, WY 82071 USA
[2] Acad Sinica, Inst Biol Chem, Taipei 115, Taiwan
[3] GlycoBac LLC, Laramie, WY 82072 USA
关键词
CHINESE-HAMSTER OVARY; ZINC-FINGER NUCLEASES; LOBES GENE ENCODES; BIALLELIC KNOCKOUT; RECOMBINANT PROTEINS; ALPHA-MANNOSIDASE; TRICHOPLUSIA-NI; CHO-CELLS; DROSOPHILA; EXPRESSION;
D O I
10.1021/acschembio.5b00340
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Fused lobes (FDL) is an enzyme that simultaneously catalyzes a key trimming reaction and antagonizes elongation reactions in the insect N-glycan processing pathway. Accordingly, FDL function accounts, at least in part, for major differences in the N-glycosylation patterns of glycoproteins produced by insect and mammalian cells. In this study, we used the CRISPR-Cas9 system to edit the fdl gene in Drosophila melanogaster S-2 cells. CRISPR-Cas9 editing produced a high frequency of site-specific nucleotide insertions and deletions, reduced the production of insect-type, paucimannosidic products (Man(3)GlcNAc(2)), and led to the production of partially elongated, mammalian-type complex N-glycans (GlcNAc(2)Man(3)GlcNAc(2)) in S-2 cells. As CRISPR-Cas9 has not been widely used to analyze or modify protein glycosylation pathways or edit insect cell genes, these results underscore its broad utility as a tool for these purposes. Our results also confirm the key role of FDL at the major branch point distinguishing insect and mammalian N-glycan processing pathways. Finally, the new FDL-deficient S-2 cell derivative produced in this study will enable future bottom-up glycoengineering efforts designed to isolate insect cell lines that can efficiently produce recombinant glycoproteins with chemically predefined oligosaccharide side-chain structures.
引用
收藏
页码:2199 / 2208
页数:10
相关论文
共 68 条
[1]   INSECT CELLS CONTAIN AN UNUSUAL, MEMBRANE-BOUND BETA-N-ACETYLGLUCOSAMINIDASE PROBABLY INVOLVED IN THE PROCESSING OF PROTEIN N-GLYCANS [J].
ALTMANN, F ;
SCHWIHLA, H ;
STAUDACHER, E ;
GLOSSL, J ;
MARZ, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (29) :17344-17349
[2]   PROCESSING OF ASPARAGINE-LINKED OLIGOSACCHARIDES IN INSECT CELLS - N-ACETYLGLUCOSAMINYLTRANSFERASE I AND II ACTIVITIES IN CULTURED LEPIDOPTERAN CELLS [J].
ALTMANN, F ;
KORNFELD, G ;
DALIK, T ;
STAUDACHER, E ;
GLOSSL, J .
GLYCOBIOLOGY, 1993, 3 (06) :619-625
[3]   Dynamic developmental elaboration of N-linked glycan complexity in the Drosophila melanogaster embryo [J].
Aoki, Kazuhiro ;
Perlman, Mindy ;
Lim, Jae-Min ;
Cantu, Rebecca ;
Wells, Lance ;
Tiemeyer, Michael .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (12) :9127-9142
[4]   THE GLYCOMICS OF GLYCAN GLUCURONYLATION IN DROSOPHILA MELANOGASTER [J].
Aoki, Kazuhiro ;
Tiemeyer, Michael .
METHODS IN ENZYMOLOGY, VOL 480: GLYCOBIOLOGY, 2010, 480 :297-321
[5]   Mutagenesis and homologous recombination in Drosophila cell lines using CRISPR/Cas9 [J].
Bassett, Andrew R. ;
Tibbit, Charlotte ;
Ponting, Chris P. ;
Liu, Ji-Long .
BIOLOGY OPEN, 2014, 3 (01) :42-49
[6]   TAL Effectors: Customizable Proteins for DNA Targeting [J].
Bogdanove, Adam J. ;
Voytas, Daniel F. .
SCIENCE, 2011, 333 (6051) :1843-1846
[7]  
Boquet I, 2000, J NEUROBIOL, V42, P33
[8]   STEPS IN THE BIOSYNTHESIS OF MOSQUITO CELL-MEMBRANE GLYCOPROTEINS AND THE EFFECTS OF TUNICAMYCIN [J].
BUTTERS, TD ;
HUGHES, RC ;
VISCHER, P .
BIOCHIMICA ET BIOPHYSICA ACTA, 1981, 640 (03) :672-686
[9]   Genome Engineering With Zinc-Finger Nucleases [J].
Carroll, Dana .
GENETICS, 2011, 188 (04) :773-782
[10]   Identification and expression analysis of Drosophila melanogaster genes encoding β-hexosaminidases of the sperm plasma membrane [J].
Cattaneo, F. ;
Pasini, M. E. ;
Intra, J. ;
Matsumoto, M. ;
Briani, F. ;
Hoshi, M. ;
Perotti, M. E. .
GLYCOBIOLOGY, 2006, 16 (09) :786-800