Grain Boundary Induced Conductivity in Li2O2

被引:44
作者
Geng, W. T. [1 ]
He, B. L. [2 ]
Ohno, T. [1 ,3 ]
机构
[1] Natl Inst Mat Sci, GREEN, Tsukuba, Ibaraki 3050047, Japan
[2] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
[3] Natl Inst Mat Sci, Computat Mat Sci Unit, Tsukuba, Ibaraki 3050047, Japan
关键词
LITHIUM PEROXIDE; TRANSPORT;
D O I
10.1021/jp405315k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The dominant discharge product in Li-air batteries, lithium peroxide (Li2O2), is intrinsically a wide band gap insulator as a perfect crystal. Recent density functional theory studies have suggested both vacancy- and polaron-mediated electron transportation mechanisms. We here show computational evidence from both semilocal and hybrid density functional calculations that the Sigma 3(1 (1) over bar 00)[11 (2) over bar0] tilt grain boundaries (GBs) in Li2O2 can produce spin-polarized gap states. For each type of Sigma 3 GBs, GB1, GB2, and GB2* which has different atomic layer as the mirror plane, we have examined stoichiometric and a number of O-rich chemistry and find that stable geometry can take both forms. We find stoichiometric GBs disturb negligibly the electronic structure of Li2O2, yet the O-rich GBs produce spin-polarized gap states in a similar manner to free surface cases. Lithium deficiency leads to compression of interfacial O-O bonds, enlarges the pi(p)-pi(p)* split, and pushes up the antibonding pi(p)* to (GB2) or beyond (GB2*) the Fermi energy. As a result, GB2 becomes half-metallic and GB2* becomes semiconducting with a small band gap of 1.0 eV. In both cases, spin polarization of O ions help to stabilize the GB by leaving the up spin of its gap states shifted down below the Fermi level and the down spin states open. Since Li2O2 is always polycrystalline as a discharge product, the presence of GBs may enhance conductivity.
引用
收藏
页码:25222 / 25228
页数:7
相关论文
共 25 条
[1]   A polymer electrolyte-based rechargeable lithium/oxygen battery [J].
Abraham, KM ;
Jiang, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) :1-5
[2]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[3]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[4]   Structure of Lithium Peroxide [J].
Chan, Maria K. Y. ;
Shirley, Eric L. ;
Karan, Naba K. ;
Balasubramanian, Mahalingam ;
Ren, Yang ;
Greeley, Jeffrey P. ;
Fister, Tim T. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (19) :2483-2486
[5]   On the structure of lithium peroxide, Li2O2 [J].
Cota, LG ;
de la Mora, P .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 2005, 61 :133-136
[6]   DFT plus U Study of Polaronic Conduction in Li2O2 and Li2CO3: Implications for Li-Air Batteries [J].
Garcia-Lastra, J. M. ;
Myrdal, J. S. G. ;
Christensen, R. ;
Thygesen, K. S. ;
Vegge, T. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (11) :5568-5577
[7]  
Geng W. T., 2001, PHYS REV B, V63
[8]   Electron and Ion Transport In Li2O2 [J].
Gerbig, Oliver ;
Merkle, Rotraut ;
Maier, Joachim .
ADVANCED MATERIALS, 2013, 25 (22) :3129-3133
[9]  
Heyd J, 2006, J CHEM PHYS, V124, DOI [10.1063/1.2204597, 10.1063/1.1564060]
[10]   Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery [J].
Hummelshoj, J. S. ;
Blomqvist, J. ;
Datta, S. ;
Vegge, T. ;
Rossmeisl, J. ;
Thygesen, K. S. ;
Luntz, A. C. ;
Jacobsen, K. W. ;
Norskov, J. K. .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (07)