Effect of irradiation on Gallium Arsenide solar cells with multi quantum well structures

被引:0
|
作者
Maximenko, S. I. [1 ]
Lumb, M. P. [2 ]
Hoheisel, R. [2 ]
Gonzalez, M. [3 ]
Scheiman, D. A. [1 ]
Messenger, S. R. [4 ]
Tibbits, T. N. D. [5 ]
Imaizumi, M. [6 ]
Ohshima, T. [7 ]
Sato, S. -I. [7 ]
Jenkins, P. P. [1 ]
Walters, R. J. [1 ]
机构
[1] Naval Res Lab, Washington, DC 20375 USA
[2] George Washington Univ, Washington, DC 20052 USA
[3] Sotera Def Solut, Annapolis Jct, MD 20701 USA
[4] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA
[5] QuantaSol Ltd, Kingston Upon Thames KT1 3GZ, Surrey, England
[6] Japan Aerosp Explorat Agcy JAXA, Tsukuba, Ibaraki 3058505, Japan
[7] Japan Atom Energy Agcy JAEA, Takasaki, Gunma 3701292, Japan
来源
2014 IEEE 40TH PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC) | 2014年
关键词
Irradiation; SEM; EBIC; Quantum Wells; GaAs; simulation; C-V; BEAM-INDUCED CURRENT; CARRIER REMOVAL; SEMICONDUCTORS; RADIATION; DEFECTS; SPACE; GAAS;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, a complex analysis of the radiation response of GaAs solar cells with multi quantum wells (MQW) incorporated in the i-region of the device is presented. Electronic transport properties of the MQW i-region were assessed experimentally by the electron beam induced current (EBIC) technique. A 2-D EBIC diffusion model was applied to simulate EBIC line scans across device structure for different radiation doses. The results are interpreted using numerical modeling of the electrical field distribution at different radiation levels. Type conversion from n-to p-type was found in MQW i-region at displacement damage dose as low as low as similar to 9.88E9 MeV/g. This is supported by experimental and simulated EBIC and electric field distribution results.
引用
收藏
页码:2144 / 2148
页数:5
相关论文
共 50 条
  • [1] Thermal stability of gallium arsenide solar cells
    Papez, Nikola
    Skvarenina, Lubomir
    Tofel, Pavel
    Sobola, Dinara
    PHOTONICS, DEVICES, AND SYSTEMS VII, 2017, 10603
  • [2] Effect of gamma irradiation on photoconversion characteristics of metal/gallium arsenide barrier structures with textured interface
    N. L. Dmitruk
    O. Yu. Borkovskaya
    R. V. Konakova
    I. B. Mamontova
    S. V. Mamykin
    D. I. Voitsikhovskiy
    Technical Physics, 2002, 47 : 698 - 702
  • [3] Heat blocking gallium arsenide solar cells
    F. Rahman
    C.D. Farmer
    C. Schmidt
    G. Pfaff
    C.R. Stanley
    Applied Physics A, 2008, 90 : 231 - 236
  • [4] Geometrical Optimization of Gallium Arsenide (GaAs) nanostructure based Solar Cells
    Singh, Sadhna
    Mal, Indranil
    Samajdar, Dip Prakash
    Dutta, Koushik
    MATERIALS TODAY-PROCEEDINGS, 2022, 58 : 686 - 691
  • [5] The effect of neutron irradiation on the microhardness of gallium arsenide
    Jibuti, ZV
    Dolidze, ND
    Sikhuashvili, N
    Eristavi, GL
    TECHNICAL PHYSICS LETTERS, 2004, 30 (09) : 730 - 731
  • [6] The effect of neutron irradiation on the microhardness of gallium arsenide
    Z. V. Jibuti
    N. D. Dolidze
    N. Sikhuashvili
    G. L. Eristavi
    Technical Physics Letters, 2004, 30 : 730 - 731
  • [7] The magnetoelectric effect in structures based on metallized gallium arsenide substrates
    V. M. Laletin
    A. I. Stognii
    N. N. Novitskii
    N. N. Poddubnaya
    Technical Physics Letters, 2014, 40 : 969 - 971
  • [8] The magnetoelectric effect in structures based on metallized gallium arsenide substrates
    Laletin, V. M.
    Stognii, A. I.
    Novitskii, N. N.
    Poddubnaya, N. N.
    TECHNICAL PHYSICS LETTERS, 2014, 40 (11) : 969 - 971
  • [9] Radiation response of multi-quantum well solar cells: Electron-beam-induced current analysis
    Maximenko, S. I.
    Lumb, M. P.
    Hoheisel, R.
    Gonzalez, M.
    Scheiman, D. A.
    Messenger, S. R.
    Tibbits, T. N. D.
    Imaizumi, M.
    Ohshima, T.
    Sato, S. I.
    Jenkins, P. P.
    Walters, R. J.
    JOURNAL OF APPLIED PHYSICS, 2015, 118 (24)
  • [10] The effect of hydrogenation on the photoconductivity of ion-doped gallium arsenide structures
    V. A. Kagadei
    Yu. V. Lilenko
    L. S. Shirokova
    D. I. Proskurovskii
    Technical Physics Letters, 2000, 26 : 269 - 271