Asymptotic behavior of Sobolev-type orthogonal polynomials on the unit circle

被引:0
|
作者
Moreno, AF
Marcellán, F
Pan, K
机构
[1] Univ Aveiro, Dept Matemat, P-3810 Aveiro, Portugal
[2] Univ Carlos III Madrid, Escuela Politecn Super, Dept Matemat, Leganes Madrid 28911, Spain
[3] Barry Univ, Dept Math & Comp Sci, Miami Shores, FL 33161 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the asymptotic behavior of the sequence of polynomials orthogonal with respect to the discrete Sobolev inner product on the unit circle. < f, g > = integral(0)(2 pi) f(e(i theta)) <(g(e(i theta)))over bar>d theta(0) + f(Z) Ag(Z)(H), where f(Z)=(f(z(1)), ...,f((l1))(z(1)), ..., f(z(m)), ...,f((lm))(z(m))), A is a M x M positive definite matrix or a positive semidefinite diagonal block matrix, M = l(1) + ... + l(m) + m, d mu belongs to a certain class of measures, and \z(i)\ > 1, i = 1,2, ..., m. (C) 1999 Academic Press.
引用
收藏
页码:345 / 363
页数:19
相关论文
共 50 条
  • [1] Sobolev-type orthogonal polynomials on the unit circle
    Marcellán, F
    Moral, L
    APPLIED MATHEMATICS AND COMPUTATION, 2002, 128 (2-3) : 329 - 363
  • [2] A new approach to relative asymptotic behavior for discrete Sobolev-type orthogonal polynomials on the unit circle
    Castillo, Kenier
    APPLIED MATHEMATICS LETTERS, 2012, 25 (06) : 1000 - 1004
  • [3] Sobolev-type orthogonal polynomials on the unit ball
    Delgado, Antonia M.
    Perez, Teresa E.
    Pinar, Miguel A.
    JOURNAL OF APPROXIMATION THEORY, 2013, 170 : 94 - 106
  • [4] Asymptotic behaviour of Sobolev orthogonal polynomials on the unit circle
    Castillo, Kenier
    Garza, Luis E.
    Marcellan, Francisco
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2013, 24 (01) : 23 - 38
  • [5] Asymptotic Behavior of Sobolev-Type Orthogonal Polynomials on a Rectifiable Jordan Curve or Arc
    A. Branquinho
    A. F. Moreno
    F. Marcellán
    Constructive Approximation, 2002, 18 : 161 - 182
  • [6] Asymptotic behavior of Sobolev-type orthogonal polynomials on a rectifiable Jordan curve or arc
    Branquinho, A
    Moreno, AF
    Marcellán, F
    CONSTRUCTIVE APPROXIMATION, 2002, 18 (02) : 161 - 182
  • [7] Pastro polynomials and Sobolev-type orthogonal polynomials on the unit circle based on a q-difference operator
    Suni, M. Hancco
    Marcellan, F.
    Ranga, A. Sri
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2023, 29 (03) : 315 - 343
  • [8] ORTHOGONAL POLYNOMIALS OF SOBOLEV TYPE ON THE UNIT-CIRCLE
    CACHAFEIRO, A
    MARCELLAN, F
    JOURNAL OF APPROXIMATION THEORY, 1994, 78 (01) : 127 - 146
  • [9] SOBOLEV-TYPE ORTHOGONAL POLYNOMIALS - THE NONDIAGONAL CASE
    ALFARO, M
    MARCELLAN, F
    REZOLA, ML
    RONVEAUX, A
    JOURNAL OF APPROXIMATION THEORY, 1995, 83 (02) : 266 - 287
  • [10] Zeros of Sobolev orthogonal polynomials on the unit circle
    Castillo, K.
    Garza, L. E.
    Marcellan, F.
    NUMERICAL ALGORITHMS, 2012, 60 (04) : 669 - 681