Non-abelian representations of some sporadic geometries

被引:15
|
作者
Ivanov, AA
Pasechnik, DV
Shpectorov, SV
机构
[1] EINDHOVEN UNIV TECHNOL,DEPT MATH & INFORMAT,RIACA,5600 EINDHOVEN,NETHERLANDS
[2] MOSCOW SYST ANAL INST,MOSCOW 117312,RUSSIA
[3] UNIV MICHIGAN,ANN ARBOR,MI 48109
[4] UNIV CAMBRIDGE,CAMBRIDGE,ENGLAND
关键词
D O I
10.1006/jabr.1996.0132
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a point-line incidence system S = (P, L) with three points per line we define the universal representation group of S as R(S) = [z(p), p is an element of P \ z(p)(2) = 1 for p is an element of P, z(p)z(q)z(r) = 1 for {p,q,r} is an element of L]. We prove that if G is the 2-local parabolic geometry of the sporadic simple group F-1 (the Monster) or F-2 (the Baby Monster) then R(G) congruent to F-1 or 2 . F-2, respectively. (C) 1996 Academic Press, Inc.
引用
收藏
页码:523 / 557
页数:35
相关论文
共 50 条
  • [1] Non-Abelian bubbles in microstate geometries
    Ramirez, Pedro F.
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (11):
  • [2] Non-Abelian bubbles in microstate geometries
    Pedro F. Ramírez
    Journal of High Energy Physics, 2016
  • [3] Graphical Frobenius representations of non-abelian groups
    Korchmaros, Gabor
    Nagy, Gabor P.
    ARS MATHEMATICA CONTEMPORANEA, 2021, 20 (01) : 89 - 102
  • [4] SOME PROPERTIES OF NON-ABELIAN CATEGORIES
    GRILLET, PA
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1968, 266 (11): : 550 - &
  • [5] GENERATORS FOR SOME NON-ABELIAN GROUPS
    BRUNNER, AM
    MINKUS, J
    ALLENBY, RBJT
    CANTWELL, J
    WHITSON, G
    HOLMES, C
    AMERICAN MATHEMATICAL MONTHLY, 1978, 85 (03): : 204 - 205
  • [6] On non-abelian T-dual geometries with Ramond fluxes
    Sfetsos, Konstadinos
    Thompson, Daniel C.
    NUCLEAR PHYSICS B, 2011, 846 (01) : 21 - 42
  • [7] NON-ABELIAN VORTICES AND NON-ABELIAN STATISTICS
    LO, HK
    PRESKILL, J
    PHYSICAL REVIEW D, 1993, 48 (10) : 4821 - 4834
  • [8] QUASI-PERMUTATION REPRESENTATIONS OF SOME MINIMAL NON-ABELIAN p-GROUPS
    Abbaspour, Mohammad Hassan
    Behravesh, Houshang
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2012, (29): : 55 - 62
  • [9] Holographic flows in non-Abelian T-dual geometries
    Macpherson, Niall T.
    Nunez, Carlos
    Thompson, Daniel C.
    Zacarias, S.
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (11): : 1 - 39
  • [10] Holographic flows in non-Abelian T-dual geometries
    Niall T. Macpherson
    Carlos Núñez
    Daniel C. Thompson
    S. Zacarías
    Journal of High Energy Physics, 2015