The hydrodynamical limit of the Vlasov-Poisson system

被引:5
作者
Dietz, C [1 ]
Sander, V [1 ]
机构
[1] Univ Munich, Inst Math, D-80333 Munich, Germany
来源
TRANSPORT THEORY AND STATISTICAL PHYSICS | 1999年 / 28卷 / 05期
关键词
D O I
10.1080/00411459908205855
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For an ensemble of particles with selfconsistent interaction we consider two models of the matter for describing the time evolution of the system: the kinetic and the fluid model given by the Vlasov-Poisson system and the Euler-Poisson system with pressure zero. Suppose that in the kinetic description velocities initially concentrate. We then show that velocities also concentrate for later times. In the hydrodynamical limit this concentration represents a solution of the fluid dynamical model.
引用
收藏
页码:499 / 520
页数:22
相关论文
共 20 条
[1]  
Amann H, 1990, DEGRUYTER STUDIES MA, V13
[2]   GLOBAL SYMMETRIC SOLUTIONS OF INITIAL VALUE-PROBLEM OF STELLAR DYNAMICS [J].
BATT, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1977, 25 (03) :342-364
[3]  
BATT J, IN PRESS ADV DIFF EQ
[4]   AN EXISTENCE THEOREM FOR PERTURBED NEWTONIAN COSMOLOGICAL MODELS [J].
BRAUER, U .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (03) :1224-1233
[5]   A CLASS OF SOLUTIONS FOR SELF-GRAVITATING DUST IN NEWTONIAN GRAVITY [J].
BUCHERT, T ;
GOTZ, G .
JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (11) :2714-2719
[6]   HYDRODYNAMIC LIMITS OF THE VLASOV EQUATION [J].
CAPRINO, S ;
ESPOSITO, R ;
MARRA, R ;
PULVIRENTI, M .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (5-6) :805-820
[7]  
CERCIGNANI C, 1993, NONEQUILIBRIUM PROBL
[8]  
DEMASI A, 1991, LECT NOTES MATH, V1501, P1
[9]  
DIETZ C, 1997, THESIS U MUNCHEN
[10]   A PARTICLE METHOD FOR A SELF-GRAVITATING FLUID - A CONVERGENCE RESULT [J].
DILISIO, R .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1995, 18 (13) :1083-1094