Use of radiomics in the radiation oncology setting: Where do we stand and what do we need?

被引:11
作者
Schick, U. [1 ,2 ,3 ]
Lucia, F. [1 ,2 ,3 ]
Bourbonne, V [1 ,2 ,3 ]
Dissaux, G. [1 ,2 ,3 ]
Pradier, O. [1 ,2 ,3 ]
Jaouen, V [2 ]
Tixier, F. [2 ]
Visvikis, D. [2 ]
Hatt, M. [2 ]
机构
[1] Univ Hosp, Radiat Oncol Dept, 2 Ave Foch, F-29200 Brest, France
[2] Univ Bretagne Occident, INSERM, LaTIM, UMR 1101, Brest, France
[3] Univ Bretagne Occident, Fac Med & Sci Sante, Brest, France
来源
CANCER RADIOTHERAPIE | 2020年 / 24卷 / 6-7期
关键词
Radiomics; Texture; Radiotherapy; ARTIFICIAL-INTELLIGENCE; CANCER; MRI; PREDICTION; THERAPY; IMAGES; HEAD; CLASSIFICATION; RECONSTRUCTION; HETEROGENEITY;
D O I
10.1016/j.canrad.2020.07.005
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Radiomics is a field that has been growing rapidly for the past ten years in medical imaging and more particularly in oncology where the primary objective is to contribute to personalised and predictive medicine. This short review aimed at providing some insights regarding the potential value of radiomics for cancer patients treated with radiotherapy. Radiomics may contribute to each stage of the patients' management: diagnosis, planning, treatment monitoring and post-treatment follow-up (toxicity and response). However, its applicability in clinical routine is currently hindered by several factors, including lack of automation, standardisation and harmonisation. A major effort must be carried out to automate the workflow, standardise radiomics good practices and carry out large-scale studies before any transfer to daily clinical practice. (C) 2020 Societe francaise de radiotherapie oncologique (SFRO). Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:755 / 761
页数:7
相关论文
共 76 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   Texture analysis of tissues in Gleason grading of prostate cancer [J].
Alexandratou, Eleni ;
Yova, Dido ;
Gorpas, Dimitris ;
Maragos, Petros ;
Agrogiannis, George ;
Kavantzas, Nikolaos .
IMAGING, MANIPULATION, AND ANALYSIS OF BIOMOLECULES, CELLS, AND TISSUES VI, 2008, 6859
[3]   A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets [J].
Antropova, Natalia ;
Huynh, Benjamin Q. ;
Giger, Maryellen L. .
MEDICAL PHYSICS, 2017, 44 (10) :5162-5171
[4]   Radiomics of CT Features May Be Nonreproducible and Redundant: Influence of CT Acquisition Parameters [J].
Berenguer, Roberto ;
del Rosario Pastor-Juan, Maria ;
Canales-Vazquez, Jesus ;
Castro-Garcia, Miguel ;
Villas, Maria Victoria ;
Mansilla Legorburo, Francisco ;
Sabater, Sebastia .
RADIOLOGY, 2018, 288 (02) :407-415
[5]   Artificial intelligence in cancer imaging: Clinical challenges and applications [J].
Bi, Wenya Linda ;
Hosny, Ahmed ;
Schabath, Matthew B. ;
Giger, Maryellen L. ;
Birkbak, Nicolai J. ;
Mehrtash, Alireza ;
Allison, Tavis ;
Arnaout, Omar ;
Abbosh, Christopher ;
Dunn, Ian F. ;
Mak, Raymond H. ;
Tamimi, Rulla M. ;
Tempany, Clare M. ;
Swanton, Charles ;
Hoffmann, Udo ;
Schwartz, Lawrence H. ;
Gillies, Robert J. ;
Huang, Raymond Y. ;
Aerts, Hugo J. W. L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) :127-157
[6]   Radiomics: A primer for the radiation oncologist [J].
Bibault, J. -E. ;
Xing, L. ;
Giraud, P. ;
El Ayachy, R. ;
Giraud, N. ;
Decazes, P. ;
Burgun, A. ;
Giraud, P. .
CANCER RADIOTHERAPIE, 2020, 24 (05) :403-410
[7]   External Validation of an MRI-Derived Radiomics Model to Predict Biochemical Recurrence after Surgery for High-Risk Prostate Cancer [J].
Bourbonne, Vincent ;
Fournier, Georges ;
Vallieres, Martin ;
Lucia, Francois ;
Doucet, Laurent ;
Tissot, Valentin ;
Cuvelier, Gilles ;
Hue, Stephane ;
Du, Henri Le Penn ;
Perdriel, Luc ;
Bertrand, Nicolas ;
Staroz, Frederic ;
Visvikis, Dimitris ;
Pradier, Olivier ;
Hatt, Mathieu ;
Schick, Ulrike .
CANCERS, 2020, 12 (04)
[8]   Deep Learning-based Image Conversion of CT Reconstruction Kernels Improves Radiomics Reproducibility for Pulmonary Nodules or Masses [J].
Choe, Jooae ;
Lee, Sang Min ;
Do, Kyung-Hymn ;
Lee, Gaeun ;
Lee, June-Goo ;
Seo, Joon Beom .
RADIOLOGY, 2019, 292 (02) :365-373
[9]   Computational resources for radiomics [J].
Court, Laurence E. ;
Fave, Xenia ;
Mackin, Dennis ;
Lee, Joonsang ;
Yang, Jinzhong ;
Zhang, Lifei .
TRANSLATIONAL CANCER RESEARCH, 2016, 5 (04) :340-348
[10]   Lung Texture in Serial Thoracic Computed Tomography Scans: Correlation of Radiomics-based Features With Radiation Therapy Dose and Radiation Pneumonitis Development [J].
Cunliffe, Alexandra ;
Armato, Samuel G., III ;
Castillo, Richard ;
Ngoc Pham ;
Guerrero, Thomas ;
Al-Hallaq, Hania A. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2015, 91 (05) :1048-1056