From exact results to gauge dynamics on Double-struck capital R3 x S1

被引:4
作者
Ardehali, Arash Arabi [1 ]
Cassia, Luca [1 ]
Lu, Yongchao [1 ]
机构
[1] Uppsala Univ, Dept Phys & Astron, Box 516, SE-75120 Uppsala, Sweden
关键词
Nonperturbative Effects; Supersymmetric Gauge Theory; Supersymmetric Effective Theories; Wilson; 't Hooft and Polyakov loops; INSTANTONS; MODEL;
D O I
10.1007/JHEP08(2020)053
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We revisit the vacuum structure of the N = 1 Intriligator-Seiberg-Shenker model on R-3 x S-1. Guided by the Cardy-like asymptotics of its Romelsberger index, and building on earlier semi-classical results by Poppitz and Unsal, we argue that previously overlooked non-perturbative effects generate a Higgs-type potential on the classical Coulomb branch of the low-energy effective 3d N = 2 theory. In particular, on part of the Coulomb branch we encounter the first instance of a dynamically-generated quintic monopole superpotential.
引用
收藏
页数:20
相关论文
共 47 条
[31]   Monopoles and instantons on partially compactified D-branes [J].
Lee, K ;
Yi, PJ .
PHYSICAL REVIEW D, 1997, 56 (06) :3711-3717
[32]   BUNDLES OVER MODULI SPACES AND THE QUANTIZATION OF BPS MONOPOLES [J].
MANTON, NS ;
SCHROERS, BJ .
ANNALS OF PHYSICS, 1993, 225 (02) :290-338
[33]   Three-manifold topology and the Donaldson-Witten partition function [J].
Mariño, M ;
Moore, G .
NUCLEAR PHYSICS B, 1999, 547 (03) :569-598
[34]   The character of the super symmetric Casimir energy [J].
Martelli, Dario ;
Sparks, James .
JOURNAL OF HIGH ENERGY PHYSICS, 2016, (08)
[35]  
Nye T.M.W., MATH0009144
[36]   Chiral gauge dynamics and dynamical supersymmetry breaking [J].
Poppitz, Erich ;
Unsal, Mithat .
JOURNAL OF HIGH ENERGY PHYSICS, 2009, (07)
[37]   Index theorem for topological excitations on R3 x S1 and Chern-Simons theory [J].
Poppitz, Erich ;
Unsal, Mithat .
JOURNAL OF HIGH ENERGY PHYSICS, 2009, (03)
[38]   CHIRAL DUALS OF NONCHIRAL SUSY GAUGE-THEORIES [J].
POULIOT, P .
PHYSICS LETTERS B, 1995, 359 (1-2) :108-113
[39]   Transformations of elliptic hypergeometric integrals [J].
Rains, Eric M. .
ANNALS OF MATHEMATICS, 2010, 171 (01) :169-243
[40]   Limits of elliptic hypergeometric integrals [J].
Rains, Eric M. .
RAMANUJAN JOURNAL, 2009, 18 (03) :257-306