Monotonicity properties and bounds for the complete p-elliptic integrals

被引:15
作者
Huang, Xi-Fan [1 ]
Wang, Miao-Kun [1 ]
Shao, Hao [1 ]
Zhao, Yi-Fan [1 ]
Chu, Yu-Ming [2 ,3 ]
机构
[1] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
[2] Hunan City Univ, Coll Sci, Yiyang 413000, Peoples R China
[3] Changsha Univ Sci & Technol, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Peoples R China
来源
AIMS MATHEMATICS | 2020年 / 5卷 / 06期
关键词
complete elliptic integral; complete p-elliptic integral; generalized trigonometric function; monotonicity; bound; CONVEX-FUNCTIONS; INEQUALITIES; HADAMARD; REFINEMENTS;
D O I
10.3934/math.2020453
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the article, we establish some monotonicity properties for certain functions involving the complete p-elliptic integrals of the first and second kinds, and find several sharp bounds for the p-elliptic integrals. Our results are the generalizations and improvements of some previously known results for the classical complete elliptic integrals.
引用
收藏
页码:7071 / 7086
页数:16
相关论文
共 54 条
[11]   Fractional Hadamard and Fejer-Hadamard Inequalities Associated with Exponentially (s, m)-Convex Functions [J].
Guo, Shuya ;
Chu, Yu-Ming ;
Farid, Ghulam ;
Mehmood, Sajid ;
Nazeer, Waqas .
JOURNAL OF FUNCTION SPACES, 2020, 2020
[12]   Monotonicity properties and bounds involving the two-parameter generalized Grotzsch ring function [J].
Hai, Guo-Jing ;
Zhao, Tie-Hong .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
[13]   Some unified bounds for exponentially tgs-convex functions governed by conformable fractional operators [J].
Hu Ge-JiLe ;
Rashid, Saima ;
Noor, Muhammad Aslam ;
Suhail, Arshiya ;
Chu, Yu-Ming .
AIMS MATHEMATICS, 2020, 5 (06) :6108-6123
[14]   Some generalized fractional integral Simpson's type inequalities with applications [J].
Hussain, Sabir ;
Khalid, Javairiya ;
Chu, Yu Ming .
AIMS MATHEMATICS, 2020, 5 (06) :5859-5883
[15]   Revisiting the Hermite-Hadamard fractional integral inequality via a Green function [J].
Iqbal, Arshad ;
Khan, Muhammad Adil ;
Mohammad, Noor ;
Nwaeze, Eze R. ;
Chu, Yu-Ming .
AIMS MATHEMATICS, 2020, 5 (06) :6087-6107
[16]   New Estimates of q1q2-Ostrowski-Type Inequalities within a Class of n-Polynomial Prevexity of Functions [J].
Kalsoom, Humaira ;
Idrees, Muhammad ;
Baleanu, Dumitru ;
Chu, Yu-Ming .
JOURNAL OF FUNCTION SPACES, 2020, 2020
[17]   Refinements of Jensen's and McShane's inequalities with applications [J].
Khan, Muhammad Adil ;
Pecaric, Josip ;
Chu, Yu-Ming .
AIMS MATHEMATICS, 2020, 5 (05) :4931-4945
[18]   Association of Jensen's inequality for s-convex function with Csiszar divergence [J].
Khan, Muhammad Adil ;
Hanif, Muhammad ;
Khan, Zareen Abdul Hameed ;
Ahmad, Khurshid ;
Chu, Yu-Ming .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
[19]   New Hermite-Hadamard-type inequalities for -convex fuzzy-interval-valued functions [J].
Khan, Muhammad Bilal ;
Noor, Muhammad Aslam ;
Noor, Khalida Inayat ;
Chu, Yu-Ming .
ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
[20]   Conformable fractional integral inequalities for GG- and GA-convex functions [J].
Khurshid, Yousaf ;
Khan, Muhammad Adil ;
Chu, Yu-Ming .
AIMS MATHEMATICS, 2020, 5 (05) :5012-5030