Many T copies in H-free graphs

被引:169
作者
Alon, Noga [1 ,2 ,3 ]
Shikhelman, Clara [4 ]
机构
[1] Tel Aviv Univ, Sackler Sch Math, IL-69978 Tel Aviv, Israel
[2] Tel Aviv Univ, Blavatnik Sch Comp Sci, IL-69978 Tel Aviv, Israel
[3] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
[4] Tel Aviv Univ, Dept Math, IL-69978 Tel Aviv, Israel
关键词
Extremal graph theory; H-free graphs; Projective norm graphs; Complete graphs; Complete bipartite graphs; MAXIMUM NUMBER; SUBGRAPHS; PENTAGONS; BOUNDS;
D O I
10.1016/j.jctb.2016.03.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For two graphs T and H with no isolated vertices and for an integer n, let ex(n,T, H) denote the maximum possible number of copies of T in an H-free graph on n vertices. The study of this function when T = K-2 is a single edge is the main subject of extremal graph theory. In the present paper we investigate the general function, focusing on the cases of triangles, complete graphs, complete bipartite graphs and trees. These cases reveal several interesting phenomena. Three representative results are: (i) ex(n, K-3, C-5) <= (1 + o(1)) root 3/2n(3/2), (ii) For any fixed m, s >= 2m - 2 and t >= (s - 1)! + 1, ex(n, K-m, K-s,K-t) = Theta(n(m-(2m)/)s, and (iii) For any two trees H and T, ex(n,T,H)= Theta(n(m)) where m = m(T, H) is an integer depending on H and T (its precise definition is given in Section 1). The first result improves (slightly) an estimate of Bollobas and Gyori. The proofs combine combinatorial and probabilistic arguments with simple spectral techniques. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:146 / 172
页数:27
相关论文
共 45 条
[1]   Sharp bounds for some multicolor Ramsey numbers [J].
Alon, N ;
Rödl, V .
COMBINATORICA, 2005, 25 (02) :125-141
[2]   Norm-graphs:: Variations and applications [J].
Alon, N ;
Rónyai, L ;
Szabó, T .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1999, 76 (02) :280-290
[4]   Constructive lower bounds for off-diagonal Ramsey numbers [J].
Alon, N ;
Pudlák, P .
ISRAEL JOURNAL OF MATHEMATICS, 2001, 122 (1) :243-251
[5]   Efficient testing of large graphs [J].
Alon, N ;
Fischer, E ;
Krivelevich, M ;
Szegedy, M .
COMBINATORICA, 2000, 20 (04) :451-476
[6]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theory of NP-Completeness
[7]  
Balogh J, 2015, J AM MATH SOC, V28, P669
[9]  
BOLLOBAS B, 1976, MATH PROC CAMBRIDGE, V79, P19, DOI 10.1017/S0305004100052063
[10]   Pentagons vs. triangles [J].
Bollobas, Bela ;
Gyori, Ervin .
DISCRETE MATHEMATICS, 2008, 308 (19) :4332-4336