Boundedness of the anisotropic Riesz potential in anisotropic local Morrey-type spaces

被引:7
作者
Akbulut, A. [1 ]
Guliyev, V. S. [1 ,2 ]
Muradova, Sh. A. [2 ]
机构
[1] Ahi Evran Univ, Dept Math, TR-40200 Kirsehir, Turkey
[2] Inst Math & Mech, Dept Math Anal, AZ-1145 Baku, Azerbaijan
关键词
anisotropic Riesz potential; anisotropic local and global Morrey-type spaces; Hardy operator on the cone of monotonic functions; Primary; 42B20; 42B25; 42B35; SUFFICIENT CONDITIONS; MAXIMAL OPERATOR; SINGULAR-INTEGRALS; EMBEDDINGS;
D O I
10.1080/17476933.2011.575465
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of boundedness of the anisotropic Riesz potential in local Morrey-type spaces is reduced to the problem of boundedness of the Hardy operator in weighted L p -spaces on the cone of non-negative non-increasing functions. This allows obtaining sharp sufficient conditions for boundedness for all admissible values of the parameters, which, for a certain range of the parameters wider than known before, coincide with the necessary ones.
引用
收藏
页码:259 / 280
页数:22
相关论文
共 30 条
[1]  
ADAMS DR, 1975, DUKE MATH J, V42, P765, DOI 10.1215/S0012-7094-75-04265-9
[2]  
Akbulut A., BOUNDEDNESS AN UNPUB
[3]  
[Anonymous], 1993, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals
[4]  
BESOV OV, 1966, DOKL AKAD NAUK SSSR+, V169, P1250
[5]  
Bramanti M, 1996, B UNIONE MAT ITAL, V10B, P843
[6]  
Burenkov V., 2011, POTENTIAL ANAL, V35, P1
[7]  
[Буренков B.И. Burenkov V.I.], 2006, [Доклады Академии наук, Doklady Akademii nauk], V409, P443
[8]  
Burenkov VI, 2010, EURASIAN MATH J, V1, P32
[9]   Boundedness of the fractional maximal operator in local Morrey-type spaces [J].
Burenkov, V. I. ;
Gogatishvili, A. ;
Guliyev, V. S. ;
Mustafayev, R. Ch. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (8-10) :739-758
[10]   Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces [J].
Burenkov, VI ;
Guliyev, HV .
STUDIA MATHEMATICA, 2004, 163 (02) :157-176