Optimization and evaluation of gastroretentive ranitidine HCl microspheres by using design expert software

被引:74
作者
Hooda, Aashima [1 ]
Nanda, Arun [2 ]
Jain, Manish [1 ]
Kumar, Vikash [1 ]
Rathee, Permender [1 ]
机构
[1] PDM Coll Pharm, Bahadurgarh 124507, India
[2] MDU, Dept Pharmaceut Sci, Rohtak 124001, Haryana, India
关键词
Optimization; Bioadhesive; Floating; Microspheres; Gastro retentive; Chitosan; DRUG-DELIVERY SYSTEM; IN-VITRO EVALUATION; VIVO EVALUATION; RELEASE; FORMULATION;
D O I
10.1016/j.ijbiomac.2012.07.030
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The current study involves the development and optimization of their drug entrapment and ex vivo bioadhesion of multiunit chitosan based floating system containing Ranitidine HCl by ionotropic gelation method for gastroretentive delivery. Chitosan being cationic, non-toxic, biocompatible, biodegradable and bioadhesive is frequently used as a material for drug delivery systems and used to transport a drug to an acidic environment where it enhances the transport of polar drugs across epithelial surfaces. The effect of various process variables like drug polymer ratio, concentration of sodium tripolyphosphate and stirring speed on various physiochemical properties like drug entrapment efficiency, particle size and bioadhesion was optimized using central composite design and analyzed using response surface methodology. The observed responses were coincided well with the predicted values given by the optimization technique. The optimized microspheres showed drug entrapment efficiency of 74.73%, particle size 707.26 mu m and bioadhesion 71.68% in simulated gastric fluid (pH 1.2) after 8h with floating lag time 40s. The average size of all the dried microspheres ranged from 608.24 to 720.80 mu m. The drug entrapment efficiency of microspheres ranged from 41.67% to 87.58% and bioadhesion ranged from 62% to 86%. Accelerated stability study was performed on optimized formulation as per ICH guidelines and no significant change was found in drug content on storage. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:691 / 700
页数:10
相关论文
共 30 条
[1]   Development of a new cyclosporine formulation based on poly(caprolactone) microspheres [J].
Aberturas, MR ;
Molpeceres, J ;
Guzmán, M ;
García, F .
JOURNAL OF MICROENCAPSULATION, 2002, 19 (01) :61-72
[2]   Formulation and development of hydrodynamically balanced system for metformin:: In vitro and in vivo evaluation [J].
Ali, Javed ;
Arora, Shweta ;
Ahuja, Alka ;
Babbar, Anil K. ;
Sharma, Rakesh K. ;
Khar, Roop K. ;
Baboota, Sanjula .
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2007, 67 (01) :196-201
[3]   Colonic metabolism of ranitidine: implications for its delivery and absorption [J].
Basit, AW ;
Lacey, LF .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2001, 227 (1-2) :157-165
[4]   Novel sustained release, swellable and bioadhesive gastroretentive drug delivery system for ofloxacin [J].
Chavanpatil, Mahesh D. ;
Jain, Paras ;
Chaudhari, Sachin ;
Shear, Rajesh ;
Vavia, Pradeep R. .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2006, 316 (1-2) :86-92
[5]   A FLOATING CONTROLLED-RELEASE DRUG-DELIVERY SYSTEM - IN-VITRO IN-VIVO EVALUATION [J].
DESAI, S ;
BOLTON, S .
PHARMACEUTICAL RESEARCH, 1993, 10 (09) :1321-1325
[6]   Development of a novel controlled-release system for gastric retention [J].
Deshpande, AA ;
Shah, NH ;
Rhodes, CT ;
Malick, W .
PHARMACEUTICAL RESEARCH, 1997, 14 (06) :815-819
[7]   Development and in vitro evaluation of novel floating chitosan microcapsules for oral use: comparison with non-floating chitosan microspheres [J].
El-Gibaly, I .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2002, 249 (1-2) :7-21
[8]  
Garg R, 2008, TROP J PHARM RES, V7, P1055
[9]  
Goyal P., 2011, BLOOD SUBSTITUTES BI, V39, P1