Toward detection of DNA-bound proteins using solid-state nanopores: Insights from computer simulations

被引:12
作者
Comer, Jeffrey [1 ]
Ho, Anthony [1 ]
Aksimentiev, Aleksei [1 ]
机构
[1] Univ Illinois, Dept Phys, Beckman Inst, Urbana, IL 61801 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Molecular dynamics; Nanoscale pore; Nucleic acids; Transmembrane transport;
D O I
10.1002/elps.201200164
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Through all-atom molecular dynamics simulations, we explore the use of nanopores in thin synthetic membranes for detection and identification of DNA binding proteins. Reproducing the setup of a typical experiment, we simulate electric field driven transport of DNA-bound proteins through nanopores smaller in diameter than the proteins. As model systems, we use restriction enzymes EcoRI and BamHI specifically and nonspecifically bound to a fragment of dsDNA, and streptavidin and NeutrAvidin proteins bound to dsDNA and ssDNA via a biotin linker. Our simulations elucidate the molecular mechanics of nanopore-induced rupture of a proteinDNA complex, the effective force applied to the DNAprotein bond by the electrophoretic force in a nanopore, and the role of DNAsurface interactions in the rupture process. We evaluate the ability of the nanopore ionic current and the local electrostatic potential measured by an embedded electrode to report capture of DNA, capture of a DNA-bound protein, and rupture of the DNAprotein bond. We find that changes in the strain on dsDNA can reveal the rupture of a proteinDNA complex by altering both the nanopore ionic current and the potential of the embedded electrode. Based on the results of our simulations, we suggest a new method for detection of DNA binding proteins that utilizes peeling of a nicked double strand under the electrophoretic force in a nanopore.
引用
收藏
页码:3466 / 3479
页数:14
相关论文
共 74 条
  • [1] Li J., Stein D., McMullan C., Branton D., Aziz M.J., Golovchenko J.A., Nature, 412, pp. 166-169, (2001)
  • [2] Dekker C., Nat. Nanotech., 2, pp. 209-215, (2007)
  • [3] Storm A.J., Chen J.H., Zandbergen H.W., Dekker C., Phys. Rev. E, 71, pp. 051903-051913, (2005)
  • [4] Skinner G.M., van den Hout M., Broekmans O., Dekker C., Dekker N.H., Nano Lett., 9, pp. 2953-2960, (2009)
  • [5] Wanunu M., Dadosh T., Ray V., Jin J., McReynolds L., Drndic M., Nat. Nanotech., 5, pp. 807-814, (2010)
  • [6] Branton D., Deamer D.W., Marziali A., Bayley H., Benner S.A., Butler T., Di Ventra M., Garaj S., Hibbs A., Huang X., Jovanovich S.B., Krstic P.S., Lindsay S., Ling X.S., Mastrangelo C.H., Meller A., Oliver J.S., Pershin Y.V., Ramsey J.M., Riehn R., Soni G.V., Tabard-Cossa V., Wanunu M., Wiggin M., Schloss J.A., Nat. Biotech., 26, pp. 1146-1153, (2008)
  • [7] Venkatesan B.M., Bashir R., Nat. Nanotech., 6, pp. 615-624, (2011)
  • [8] Zhao Q., Sigalov G., Dimitrov V., Dorvel B., Mirsaidov U., Sligar S., Aksimentiev A., Timp G., Nano Lett., 7, pp. 1680-1685, (2007)
  • [9] Hornblower B., Coombs A., Whitaker R.D., Kolomeisky A., Picone S.J., Meller A., Akeson M., Nat. Mater., 4, pp. 315-317, (2007)
  • [10] Dorvel B., Sigalov G., Zhao Q., Comer J., Dimitrov V., Mirsaidov U., Aksimentiev A., Timp G., Nucleic Acids Res., 37, pp. 4170-4179, (2009)