Riesz bases of eigenfunctions of integral operators with kernels discontinuous on the diagonals

被引:2
作者
Kurdyumov, V. P. [1 ]
Khromov, A. P. [1 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Saratov, Russia
关键词
Riesz basis; resolvent; characteristic number; eigenfunction; involution; DIFFERENTIAL-EQUATION; VARIABLE LIMIT; EQUICONVERGENCE; EXPANSIONS;
D O I
10.1070/IM2012v076n06ABEH002620
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the Riesz basis property in L-2[0, 1] for the family of eigenfunctions and adjoint functions of an integral operator whose kernel is discontinuous on the diagonals t = x and t = 1 - x.
引用
收藏
页码:1175 / 1189
页数:15
相关论文
共 21 条
[1]   Analogs of classical boundary value problems for a second-order differential equation with deviating argument [J].
Andreev, AA .
DIFFERENTIAL EQUATIONS, 2004, 40 (08) :1192-1194
[2]   The Theorem on Equiconvergence for the Integral Operator on Simplest Graph with Cycle [J].
Burlutskaya, M. Sh. .
IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2008, 8 (04) :8-13
[3]   Fourier method in an initial-boundary value problem for a first-order partial differential equation with involution [J].
Burlutskaya, M. Sh ;
Khromov, A. P. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2011, 51 (12) :2102-2114
[5]  
Il'in V.A., 1980, DIFF EQUAT, V16, P479
[6]  
Il'in V. A., 1983, SOV MATH DOKL, V273, P789
[7]  
Keselman G.M., 1964, IZV VYSSH UCHEBN ZAV, V2, P82
[8]   Integral operators with kernels that are discontinuous on broken lines [J].
Khromov, A. P. .
SBORNIK MATHEMATICS, 2006, 197 (11-12) :1669-1696
[9]  
Khromov A. P., 2011, P LOB MATH CTR P 10, V43, P364
[10]  
Khromov A. P., 1981, MATH USSR SB, V114, p[378, 331], DOI DOI 10.1070/SM1982V042N03ABEH002257