A classification of orbits admitting a unique invariant measure

被引:3
作者
Ackerman, Nathanael [1 ]
Freer, Cameron [2 ]
Kwiatkowska, Aleksandra [3 ,4 ]
Patel, Rehana [5 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] MIT, Dept Brain & Cognit Sci, E25-618, Cambridge, MA 02139 USA
[3] Univ Bonn, Math Inst, Endenicher Allee 60, D-53115 Bonn, Germany
[4] Uniwersytet Wroclawski, Inst Matemat, Pl Grunwaldzki 2-4, PL-50384 Wroclaw, Poland
[5] Franklin W Olin Coll Engn, Needham, MA 02492 USA
关键词
Invariant measure; High homogeneity; Unique ergodicity; GRAPHS;
D O I
10.1016/j.apal.2016.08.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the space of countable structures with fixed underlying set in a given countable language. We show that the number of ergodic probability measures on this space that are S-infinity-invariant and concentrated on a single isomorphism class must be zero, or one, or continuum. Further, such an isomorphism class admits a unique S-infinity-invariant probability measure precisely when the structure is highly homogeneous; by a result of Peter J. Cameron, these are the structures that are interdefinable with one of the five reducts of the rational linear order (Q, <). (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:19 / 36
页数:18
相关论文
共 23 条
[21]  
Nies A., 2012, ARXIV13023686
[22]   Uncountable Graphs and Invariant Measures on the Set of Universal Countable Graphs [J].
Petrov, Fedor ;
Vershik, Anatoly .
RANDOM STRUCTURES & ALGORITHMS, 2010, 37 (03) :389-406
[23]  
Vershik A.M., 2003, TEOR VEROYA PRIMEN, V48, P386