A classification of orbits admitting a unique invariant measure

被引:3
作者
Ackerman, Nathanael [1 ]
Freer, Cameron [2 ]
Kwiatkowska, Aleksandra [3 ,4 ]
Patel, Rehana [5 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] MIT, Dept Brain & Cognit Sci, E25-618, Cambridge, MA 02139 USA
[3] Univ Bonn, Math Inst, Endenicher Allee 60, D-53115 Bonn, Germany
[4] Uniwersytet Wroclawski, Inst Matemat, Pl Grunwaldzki 2-4, PL-50384 Wroclaw, Poland
[5] Franklin W Olin Coll Engn, Needham, MA 02492 USA
关键词
Invariant measure; High homogeneity; Unique ergodicity; GRAPHS;
D O I
10.1016/j.apal.2016.08.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the space of countable structures with fixed underlying set in a given countable language. We show that the number of ergodic probability measures on this space that are S-infinity-invariant and concentrated on a single isomorphism class must be zero, or one, or continuum. Further, such an isomorphism class admits a unique S-infinity-invariant probability measure precisely when the structure is highly homogeneous; by a result of Peter J. Cameron, these are the structures that are interdefinable with one of the five reducts of the rational linear order (Q, <). (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:19 / 36
页数:18
相关论文
共 23 条
[1]   INVARIANT MEASURES CONCENTRATED ON COUNTABLE STRUCTURES [J].
Ackerman, Nathanael ;
Freer, Cameron ;
Patel, Rehana .
FORUM OF MATHEMATICS SIGMA, 2016, 4
[2]   Random orderings and unique ergodicity of automorphism groups [J].
Angel, Omer ;
Kechris, Alexander S. ;
Lyons, Russell .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (10) :2059-2095
[3]  
[Anonymous], 2005, PROBABILISTIC SYMMET
[4]  
[Anonymous], 1990, London Mathematical Society Lecture Note Series
[5]  
[Anonymous], 2001, LECT NOTES MATH
[6]   On exchangeable random variables and the statistics of large graphs and hypergraphs [J].
Austin, Tim .
PROBABILITY SURVEYS, 2008, 5 :80-145
[7]  
Becker Howard, 1996, LONDON MATH SOC LECT, V232
[8]   TRANSITIVITY OF PERMUTATION GROUPS ON UNORDERED SETS [J].
CAMERON, PJ .
MATHEMATISCHE ZEITSCHRIFT, 1976, 148 (02) :127-139
[9]  
Erds P., 1959, Publ. math. debrecen, V6, P290, DOI 10.5486/PMD.1959.6.3-4.12
[10]  
Fouche Willem L., 2012, Logic, Language, Information and Computation. Proceedings of the 19th International Workshop, WoLLIC 2012, P246, DOI 10.1007/978-3-642-32621-9_18