SUBHARMONIC SOLUTIONS FOR NONLINEAR SECOND ORDER EQUATIONS IN PRESENCE OF LOWER AND UPPER SOLUTIONS

被引:22
作者
Boscaggin, Alberto [1 ]
Zanolin, Fabio [2 ]
机构
[1] SISSA ISAS, Int Sch Adv Studies, I-34136 Trieste, Italy
[2] Univ Udine, Dept Math & Comp Sci, I-33100 Udine, Italy
关键词
Periodic solutions; subharmonic solutions; Poincare-Birkhoff twist theorem; lower and upper solutions; parameter dependent equations; PLANAR HAMILTONIAN-SYSTEMS; PERIODIC-SOLUTIONS; DIFFERENTIAL-EQUATIONS; MULTIPLICITY RESULT; ROTATION NUMBERS; CONTINUATION; OSCILLATIONS; THEOREM;
D O I
10.3934/dcds.2013.33.89
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the problem of existence and multiplicity of subharmonic solutions for a second order nonlinear ODE in presence of lower and upper solutions. We show how such additional information can be used to obtain more precise multiplicity results. Applications are given to pendulum type equations and to Ambrosetti-Prodi results for parameter dependent equations.
引用
收藏
页码:89 / 110
页数:22
相关论文
共 50 条
[11]  
Birkhoff G.D., 1934, Ann. Mat. Pura Appl., V12, P117
[12]   Resonance and rotation numbers for planar Hamiltonian systems: Multiplicity results via the Poincare-Birkhoff theorem [J].
Boscaggin, Alberto ;
Garrione, Maurizio .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (12) :4166-4185
[13]  
Boscaggin A, 2011, ADV NONLINEAR STUD, V11, P77
[14]   On second order, periodic, symmetric, differential systems having subharmonics of all sufficiently large orders [J].
Cac, NP ;
Lazer, AC .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 127 (02) :426-438
[15]   CONTINUATION THEOREMS FOR PERIODIC PERTURBATIONS OF AUTONOMOUS SYSTEMS [J].
CAPIETTO, A ;
MAWHIN, J ;
ZANOLIN, F .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 329 (01) :41-72
[16]   Periodic solutions for second order differential equations with discontinuous restoring forces [J].
Cid, JA ;
Sanchez, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 288 (02) :349-364
[17]   ON CONTINUATION OF SOLUTIONS OF A CERTAIN NON-LINEAR DIFFERENTIAL EQUATION [J].
COFFMAN, CV ;
ULLRICH, DF .
MONATSHEFTE FUR MATHEMATIK, 1967, 71 (05) :385-&
[18]  
Dancer E.N., 1994, J. Dyn. Differ. Equ, V6, P631, DOI [10.1007/bf02218851, DOI 10.1007/BF02218851]
[19]   ON THE USE OF ASYMPTOTICS IN NON-LINEAR BOUNDARY-VALUE-PROBLEMS [J].
DANCER, EN .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1982, 131 :167-185
[20]  
De Coster C., 2006, 2 POINT BOUNDARY VAL