On the divisibility of graphs

被引:34
作者
Hoàng, CT [1 ]
McDiarmid, C
机构
[1] Wilfrid Laurier Univ, Dept Phys & Comp, Waterloo, ON N2L 3C5, Canada
[2] Univ Oxford, Dept Stat, Oxford OX1 3TG, England
基金
加拿大自然科学与工程研究理事会;
关键词
graph colouring; perfect graph;
D O I
10.1016/S0012-365X(01)00054-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph G is k-divisible if for each induced subgraph H of G with at least one edge, there is a partition of the vertex set of H into sets V-1,...,V-k such that no V-i contains a maximum clique of H. We show that a claw-free graph is 2-divisible if and only if it does not contain an odd hole: we conjecture that this result is true for any graph, and present further conjectures relating 2-divisibility to the strong perfect graph conjecture. We also present related results involving the chromatic number and the stability number, with connections to Ramsey theory. () 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:145 / 156
页数:12
相关论文
共 19 条
  • [1] [Anonymous], RANDOM GRAPHS
  • [2] [Anonymous], RANDOM GRAPHS
  • [3] BERGE C, 1960, PUBL I STAT U PARIS, V9, P123
  • [4] Cai LZ, 1996, J GRAPH THEOR, V23, P87, DOI 10.1002/(SICI)1097-0118(199609)23:1<87::AID-JGT10>3.0.CO
  • [5] 2-H
  • [6] RECOGNIZING CLAW-FREE PERFECT GRAPHS
    CHVATAL, V
    SBIHI, N
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1988, 44 (02) : 154 - 176
  • [7] 2-COLORING ALL 2-ELEMENT MAXIMAL ANTICHAINS
    DUFFUS, D
    SANDS, B
    SAUER, N
    WOODROW, RE
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1991, 57 (01) : 109 - 116
  • [8] COLORING RANDOM GRAPHS
    GRIMMETT, GR
    MCDIARMID, CJH
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 77 (MAR) : 313 - 324
  • [9] Gyarfas A., 1987, APPL MATH, V19, P413
  • [10] Jensen T. R., 1995, Graph Coloring Problems