Numerical simulation of compressive to tensile load conversion for determining the tensile strength of ultra-high performance concrete

被引:13
|
作者
Haeri, Hadi [1 ]
Mirshekari, Nader [2 ]
Sarfarazi, Vahab [3 ]
Marji, Mohammad Fatehi [4 ]
机构
[1] State Key Lab Deep GeoMech & Underground Engn, Beijing 100083, Peoples R China
[2] Islamic Azad Univ, Dept Civil Engn, Vramin Pishva Branch, Pishva, Iran
[3] Hamedan Univ Technol, Dept Min Engn, Hamadan, Hamadan, Iran
[4] Yazd Univ, Fac Min & Met, Dept Mine Exploitat Engn, Inst Engn, Yazd, Iran
关键词
ultra-high performance concrete; direct tensile strength; compressive to tensile load conversion; finite element method; discrete element method; FIBER-REINFORCED CONCRETE; I FRACTURE-TOUGHNESS; STEEL FIBER; PROPAGATION; BEHAVIOR; COALESCENCE; TESTS; MODEL; ROCKS;
D O I
10.12989/sss.2020.26.5.605
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this study, the experimental tests for the direct tensile strength measurement of Ultra-High Performance Concrete (UHPC) were numerically modeled by using the discrete element method (circle type element) and Finite Element Method (FEM). The experimental tests used for the laboratory tensile strength measurement is the Compressive-to-Tensile Load Conversion (CTLC) device. In this paper, the failure process including the cracks initiation, propagation and coalescence studied and then the direct tensile strength of the UHPC specimens measured by the novel apparatus i.e., CTLC device. For this purpose, the UHPC member (each containing a central hole) prepared, and situated in the CTLC device which in turn placed in the universal testing machine. The direct tensile strength of the member is measured due to the direct tensile stress which is applied to this specimen by the CTLC device. This novel device transferring the applied compressive load to that of the tensile during the testing process. The UHPC beam specimen of size 150 x 60 x 190 mm and internal hole of 75 x 60 mm was used in this study. The rate of the applied compressive load to CTLC device through the universal testing machine was 0.02 MPa/s. The direct tensile strength of UHPC was found using a new formula based on the present analyses. The numerical simulation given in this study gives the tensile strength and failure behavior of the UHPC very close to those obtained experimentally by the CTLC device implemented in the universal testing machine. The percent variation between experimental results and numerical results was found as nearly 2%. PFC2D simulations of the direct tensile strength measuring specimen and ABAQUS simulation of the tested CTLC specimens both demonstrate the validity and capability of the proposed testing procedure for the direct tensile strength measurement of UHPC specimens.
引用
收藏
页码:605 / 617
页数:13
相关论文
共 50 条
  • [1] An Experimental Evaluation of Direct Tensile Strength for Ultra-high Performance Concrete
    An Hoang Le
    FIBRE REINFORCED CONCRETE: IMPROVEMENTS AND INNOVATIONS II, BEFIB 2021, 2022, 36 : 958 - 964
  • [2] Flexural performance of concrete filled tubes with high tensile steel and ultra-high strength concrete
    Xiong, Ming-Xiang
    Xiong, De-Xin
    Liew, J. Y. Richard
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2017, 132 : 191 - 202
  • [3] The influence of steel fibres on compressive and tensile strength of ultra high performance concrete: A review
    Larsen, Ingrid Lande
    Thorstensen, Rein Terje
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 256
  • [4] Cyclic tensile behavior of ultra-high performance lightweight concrete
    Wang, Junyan
    Liu, Feifan
    Guo, Junyuan
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2021, 53 (04): : 170 - 176
  • [5] Tensile behavior of textile reinforced ultra-high performance concrete
    Yao, Yiming
    Sun, Yuanfeng
    Zhai, Mengchao
    Chen, Can
    Lu, Cong
    Wang, Jingquan
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 411
  • [6] Experimental Study on Tensile Properties of Ultra-high Performance Concrete
    Fang Z.
    Zhou T.
    Liu L.
    Hu R.
    Huang Z.
    Tiedao Xuebao/Journal of the China Railway Society, 2022, 44 (05): : 157 - 165
  • [7] Scale Effect of Coarse Aggregate Content on Flexural Tensile Strength of Ultra-High Performance Concrete
    Su J.
    Shi C.
    Lu F.
    Fang Z.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2022, 50 (02): : 438 - 444
  • [8] Study on the compressive strength and mixing of ultra-high performance concrete
    Feng, Su Li
    Zhao, Peng
    ARCHITECTURE, BUILDING MATERIALS AND ENGINEERING MANAGEMENT, PTS 1-4, 2013, 357-360 : 825 - +
  • [9] Analysis of Compressive Strength Development of Ultra-high Performance Concrete
    HAN Fangyu
    LIU Jianzhong
    ZHANG Qianqian
    LIU Jiaping
    SHI Liang
    JournaloftheChineseCeramicSociety, 2016, 3 (03) : 145 - 152
  • [10] The Compressive Strength of Ultra-high Performance Concrete at Elevated Temperatures
    MacDougall, Branna
    Hajiloo, Hamzeh
    Sarhat, Salah
    Kabanda, John
    Green, Mark
    PROCEEDINGS OF THE CANADIAN SOCIETY OF CIVIL ENGINEERING ANNUAL CONFERENCE 2022, VOL 3, CSCE 2022, 2024, 359 : 895 - 906