Generation of Large-Area Highly-Nonequlibrium Plasma in Pure Hydrogen at Atmospheric Pressure

被引:25
作者
Prysiazhnyi, V. [1 ]
Brablec, A. [1 ]
Cech, J. [1 ]
Stupavska, M. [1 ]
Cernak, M. [1 ]
机构
[1] Masaryk Univ, Reg R&D Ctr Low Cost Plasma & Nanotechnol Surface, CS-61137 Brno, Czech Republic
关键词
Diffuse coplanar surface barrier discharge; DCSBD; large area; hydrogen; plasma reduction; oxide reduction; copper; SURFACE-BARRIER DISCHARGE; THIN-FILMS; X-RAY; AIR; COPPER; PHOTOELECTRON; TRANSITION; STABILITY;
D O I
10.1002/ctpp.201310060
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Diffuse Coplanar Surface Barrier Discharge (DCSBD) is a novel type of atmospheric-pressure plasma source developed for high-speed large-area surface plasma treatments. Basic characteristics of DCSBD operated in pure atmospheric-pressure hydrogen were measured using optical and emission spectroscopy methods, and its potential for the surface treatment application was demonstrated by hydrogen plasma reduction of Cu2O thin layers. The discharge generates a thin layer of diffuse non-equilibrium plasma with a high power density of 70 Wcm(-3). The mean electron density and electron temperature derived from spectroscopic data were 1.3 x 10(16)cm(-3) and 19 x 10(3)K, and the surface Cu2O layers forming a weak boundary were reduced to metallic copper within several seconds. ((c) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
引用
收藏
页码:138 / 144
页数:7
相关论文
共 43 条
[1]   Characterization of Cu surface cleaning by hydrogen plasma [J].
Baklanov, MR ;
Shamiryan, DG ;
Tökei, Z ;
Beyer, GP ;
Conard, T ;
Vanhaelemeersch, S ;
Maex, K .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2001, 19 (04) :1201-1211
[2]   Generation of a high-density highly non-equilibrium air plasma for high-speed large-area flat surface processing [J].
Cernak, M. ;
Kovacik, D. ;
Rahel, J. ;
St'ahel, P. ;
Zahoranova, A. ;
Kubincova, J. ;
Toth, A. ;
Cernakova, L. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2011, 53 (12)
[3]   Diffuse Coplanar Surface Barrier Discharge and its applications for in-line processing of low-added-value materials [J].
Cernak, M. ;
Cernakova, L. ;
Hudec, I. ;
Kovacik, D. ;
Zahoranova, A. .
EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2009, 47 (02)
[4]   HYDROGEN PLASMA-ETCHING OF GAAS OXIDE [J].
CHANG, RPH ;
DARACK, S .
APPLIED PHYSICS LETTERS, 1981, 38 (11) :898-900
[5]   Open-air silicon etching by H2-He-CH4 flowing cold plasma [J].
Chaudhary, K ;
Inomata, K ;
Yoshimoto, M ;
Koinuma, H .
MATERIALS LETTERS, 2003, 57 (22-23) :3406-3411
[6]  
Choi K, 2003, J KOREAN PHYS SOC, V42, pS702
[7]   SURFACE MODIFICATION BY PLASMA TECHNIQUES .1. THE INTERACTIONS OF A HYDROGEN PLASMA WITH FLUOROPOLYMER SURFACES [J].
CLARK, DT ;
HUTTON, DR .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 1987, 25 (10) :2643-2664
[8]  
da Silva M.A. M., 2013, SURF COAT T IN PRESS, DOI [10.1016/j.surfcoat.2013.08.001, DOI 10.1016/J.SURFC0AT.2013.08.001]
[9]   Effects of hydrogen plasma on passivation and generation of defects in multicrystalline silicon [J].
Darwiche, S. ;
Nikravech, M. ;
Morvan, D. ;
Amouroux, J. ;
Ballutaud, D. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2007, 91 (2-3) :195-200
[10]   Environmentally Friendly Plasma-based Surface Engineering Technologies [J].
Drenik, A. ;
Mozetic, M. ;
Vesel, A. ;
Cvelbar, U. .
THIRD INTERNATIONAL WORKSHOP AND SUMMER SCHOOL ON PLASMA PHYSICS 2008, 2010, 207