On Parabolic Variational Inequalities with Multivalued Terms and Convex Functionals

被引:1
作者
Vy Khoi Le [1 ]
Schmitt, Klaus [2 ]
机构
[1] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO 65409 USA
[2] Univ Utah, Dept Math, 155 South 1400 East, Salt Lake City, UT 84112 USA
关键词
Variational Inequalities; Multivalued Term; Convex Functional; Sub-supersolutions; Extremal Solutions; LOWER-ORDER TERMS; HEMIVARIATIONAL INEQUALITIES; SUPERSOLUTION METHOD; MINIMAL SOLUTIONS; EXISTENCE;
D O I
10.1515/ans-2018-0004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following parabolic variational inequality containing a multivalued term and a convex functional: Find u is an element of L-p(0, T; W-0(1, p) (Omega)) and f is an element of F(., ., u) such that u(., 0) = u(0) and < u(t) + Au, v - u > + Psi(v) - Psi(u) >= integral(Q) f(v - u) dx dt for all v is an element of L-p(0, T; W-0(1, p) (Omega)), where A is the principal term; F is a multivalued lower-order term; Psi(u) = integral(T)(0) psi(t, u) dt is a convex functional. Moreover, we study the existence and other properties of solutions of this inequality assuming certain growth conditions on the lower-order term F.
引用
收藏
页码:269 / 287
页数:19
相关论文
共 50 条
[31]   On Double Degenerate Quasilinear Parabolic Variational Inequalities [J].
Liu, Gui-fang ;
Liu, Yi-liang .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (04) :861-868
[32]   Nonlinear parabolic inequalities with lower order terms [J].
Aberqi, A. ;
Bennouna, J. ;
Mekkour, M. ;
Redwane, H. .
APPLICABLE ANALYSIS, 2017, 96 (12) :2102-2117
[33]   Existence Results for Quasi-Variational Inequalities with Multivalued Perturbations of Maximal Monotone Mappings [J].
Vy Khoi Le .
RESULTS IN MATHEMATICS, 2017, 71 (1-2) :423-453
[34]   ON SOME QUASILINEAR PARABOLIC EQUATIONS WITH NON-MONOTONE MULTIVALUED TERMS [J].
Otani, Mitsuharu ;
Staicu, Vasile .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (06) :1831-1865
[35]   Penalty method for variational inequalities with multivalued mappings. Part I [J].
M. Z. Zgurovskii ;
V. S. Mel’nik .
Cybernetics and Systems Analysis, 2000, 36 :520-530
[36]   Penalty Method for Variational Inequalities with Multivalued Mappings. Part II [J].
M. Z. Zgurovskii ;
V. S. Mel'nik .
Cybernetics and Systems Analysis, 2000, 36 :667-677
[37]   A study of multivalued variational inequalities via horizon maps and graphical convergence [J].
Lopez, R. ;
Sama, M. .
OPTIMIZATION, 2023, 72 (04) :909-936
[38]   Penalty method for variational inequalities with multivalued mappings. Part I [J].
Zgurovskii, MZ ;
Mel'nik, VS .
CYBERNETICS AND SYSTEMS ANALYSIS, 2000, 36 (04) :520-530
[39]   Auxiliary principle technique for multivalued mixed quasi-variational inequalities [J].
Noor, MA ;
Rassias, TM .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2004, 7 (02) :267-276
[40]   Penalty method for variational inequalities with multivalued mappings. Part II [J].
Zgurovskii, MZ ;
Mel'nik, VS .
CYBERNETICS AND SYSTEMS ANALYSIS, 2000, 36 (05) :667-677