On Parabolic Variational Inequalities with Multivalued Terms and Convex Functionals

被引:1
作者
Vy Khoi Le [1 ]
Schmitt, Klaus [2 ]
机构
[1] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO 65409 USA
[2] Univ Utah, Dept Math, 155 South 1400 East, Salt Lake City, UT 84112 USA
关键词
Variational Inequalities; Multivalued Term; Convex Functional; Sub-supersolutions; Extremal Solutions; LOWER-ORDER TERMS; HEMIVARIATIONAL INEQUALITIES; SUPERSOLUTION METHOD; MINIMAL SOLUTIONS; EXISTENCE;
D O I
10.1515/ans-2018-0004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following parabolic variational inequality containing a multivalued term and a convex functional: Find u is an element of L-p(0, T; W-0(1, p) (Omega)) and f is an element of F(., ., u) such that u(., 0) = u(0) and < u(t) + Au, v - u > + Psi(v) - Psi(u) >= integral(Q) f(v - u) dx dt for all v is an element of L-p(0, T; W-0(1, p) (Omega)), where A is the principal term; F is a multivalued lower-order term; Psi(u) = integral(T)(0) psi(t, u) dt is a convex functional. Moreover, we study the existence and other properties of solutions of this inequality assuming certain growth conditions on the lower-order term F.
引用
收藏
页码:269 / 287
页数:19
相关论文
共 23 条
[1]  
[Anonymous], 1969, Quelques methodes de resolution des problemes aux limites non lineaires
[2]  
[Anonymous], 1997, MATH SURVEYS MONOGR
[3]   EXISTENCE OF MAXIMAL AND MINIMAL SOLUTIONS FOR PARABOLIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
BEBERNES, JW ;
SCHMITT, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 73 (02) :211-218
[4]  
Carl S, 2004, DIFFER INTEGRAL EQU, V17, P165
[5]  
CARL S, 1993, DIFFERENTIAL INTEGRA, V6, P1493
[6]   Evolutionary variational-hemivariational inequalities: Existence and comparison results [J].
Carl, Siegfried ;
Le, Vy K. ;
Motreanu, Dumitru .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :545-558
[7]   Elliptic inequalities with multi-valued operators: Existence, comparison and related variational-hemivariational type inequalities [J].
Carl, Siegfried ;
Le, Vy Khoi .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 :130-152
[8]   Quasilinear parabolic variational inequalities with multi-valued lower-order terms [J].
Carl, Siegfried ;
Le, Vy K. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (05) :845-864
[9]   NONLINEAR PARABOLIC BOUNDARY-VALUE PROBLEMS WITH UPPER AND LOWER SOLUTIONS [J].
DEUEL, J ;
HESS, P .
ISRAEL JOURNAL OF MATHEMATICS, 1978, 29 (01) :92-104
[10]  
Hu S., 1997, Handbook of multivalued analysis, DOI 10.1007/978-1-4615-6359-4