On Parabolic Variational Inequalities with Multivalued Terms and Convex Functionals

被引:1
|
作者
Vy Khoi Le [1 ]
Schmitt, Klaus [2 ]
机构
[1] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO 65409 USA
[2] Univ Utah, Dept Math, 155 South 1400 East, Salt Lake City, UT 84112 USA
关键词
Variational Inequalities; Multivalued Term; Convex Functional; Sub-supersolutions; Extremal Solutions; LOWER-ORDER TERMS; HEMIVARIATIONAL INEQUALITIES; SUPERSOLUTION METHOD; MINIMAL SOLUTIONS; EXISTENCE;
D O I
10.1515/ans-2018-0004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following parabolic variational inequality containing a multivalued term and a convex functional: Find u is an element of L-p(0, T; W-0(1, p) (Omega)) and f is an element of F(., ., u) such that u(., 0) = u(0) and < u(t) + Au, v - u > + Psi(v) - Psi(u) >= integral(Q) f(v - u) dx dt for all v is an element of L-p(0, T; W-0(1, p) (Omega)), where A is the principal term; F is a multivalued lower-order term; Psi(u) = integral(T)(0) psi(t, u) dt is a convex functional. Moreover, we study the existence and other properties of solutions of this inequality assuming certain growth conditions on the lower-order term F.
引用
收藏
页码:269 / 287
页数:19
相关论文
共 50 条