Gauss-Newton estimation of parameters for a spatial autoregression model

被引:20
作者
Bhattacharyya, BB
Khalil, TM
Richardson, GD
机构
[1] N CAROLINA STATE UNIV,DEPT STAT,RALEIGH,NC 27607
[2] UNIV CENT FLORIDA,DEPT MATH,ORLANDO,FL 32816
关键词
martingale central limit theorem; spatial autoregression; unit root estimation;
D O I
10.1016/0167-7152(95)00114-X
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Estimation of (alpha,beta)' in the doubly geometric model Z(ij) = alpha Z(i-1,j) + beta Z(i,j-1) - alpha beta Z(i-1,j-1) + epsilon(ij) is discussed for the cases (i) alpha = 1, \B\ < 1 and(ii) alpha = beta = 1. In each case, the ''one step Gauss-Newton estimator'' is shown, when properly normalized, to be asymptotically normal.
引用
收藏
页码:173 / 179
页数:7
相关论文
共 12 条
[1]   REGRESSION-MODELS WITH SPATIALLY CORRELATED ERRORS [J].
BASU, S ;
REINSEL, GC .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (425) :88-99
[2]   PROPERTIES OF THE SPATIAL UNILATERAL 1ST-ORDER ARMA MODEL [J].
BASU, S ;
REINSEL, GC .
ADVANCES IN APPLIED PROBABILITY, 1993, 25 (03) :631-648
[3]  
Basu S., 1992, J STAT COMPUT SIM, V41, P243, DOI 10.1080/00949652208811404
[4]   MARTINGALE CENTRAL LIMIT THEOREMS [J].
BROWN, BM .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (01) :59-&
[5]   SPATIAL-ANALYSIS OF FIELD EXPERIMENTS - AN EXTENSION TO 2 DIMENSIONS [J].
CULLIS, BR ;
GLEESON, AC .
BIOMETRICS, 1991, 47 (04) :1449-1460
[6]  
FULLER WA, 1976, INTRO STATISTICAL TI
[7]   ADVANCES IN MATHEMATICAL-MODELS FOR IMAGE-PROCESSING [J].
JAIN, AK .
PROCEEDINGS OF THE IEEE, 1981, 69 (05) :502-528
[8]  
MARTIN RJ, 1979, BIOMETRIKA, V66, P209
[9]   THE USE OF TIME-SERIES MODELS AND METHODS IN THE ANALYSIS OF AGRICULTURAL FIELD TRIALS [J].
MARTIN, RJ .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1990, 19 (01) :55-81
[10]   DEPENDENT CENTRAL LIMIT THEOREMS AND INVARIANCE PRINCIPLES [J].
MCLEISH, DL .
ANNALS OF PROBABILITY, 1974, 2 (04) :620-628