High-Performance Li-Ion Battery Anodes Based on Silicon-Graphene Self-Assemblies

被引:37
作者
Kim, Nahyeon [1 ]
Oh, Changil [1 ]
Kim, Jaegyeong [1 ]
Kim, Jeom-Soo [1 ]
Jeong, Euh Duck [2 ]
Bae, Jong-Seong [2 ]
Hong, Tae Eun [2 ]
Lee, Jung Kyoo [1 ]
机构
[1] Dong A Univ, Dept Chem Engn, Busan 49315, South Korea
[2] Korea Basic Sci Inst, Div Anal & Res, Busan 46742, South Korea
基金
新加坡国家研究基金会;
关键词
ELECTRICAL ENERGY-STORAGE; OXIDE COMPOSITE FILM; CATHODE MATERIALS; SI NANOPARTICLES; FACILE SYNTHESIS; FLEXIBLE ANODE; HIGH-CAPACITY; BINDER-FREE; SHEETS; NANOCOMPOSITE;
D O I
10.1149/2.0101701jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A series of Si/graphene sheet/carbon (Si/GS/C) composites was prepared by electrostatic self-assembly between amine-grafted silicon nanoparticles (SiNPs) and graphene oxide (GO). The Si/GS derived from carbonization of Si/GO assemblies showed limited cycling stability owing to loose cohesion between SiNPs and graphene, and increased impedances during cycling. To counteract the cycling instability of Si/GS, an additional carbon-gel coating was applied to the Si/GO assemblies in situ in solution followed by carbonization to yield dense three-dimensional particulate Si/GS/C composite with many internal voids. The obtained Si/GS/C composites showed much better electrochemical performances than the Si/GS owing to enhanced cohesion between the SiNPs and the carbon structures, which reduced the impedance buildup and protected the SiNPs from direct exposure to the electrolyte. A strategy for practical use of a high-capacity Si/GS/C composite was also demonstrated using a hybrid composite prepared by mixing it with commercial graphite. The hybrid composite electrode showed specific and volumetric capacities that were 200% and 12% larger, respectively, than those of graphite, excellent cycling stability, and CEs (>99.7%) exceeding those of graphite. Hence, electrostatic self-assembly of SiNPs and GO followed by in situ carbon coating can produce reliable, high-performance anodes for high-energy LIBs. (C) The Author(s) 2016. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.
引用
收藏
页码:A6075 / A6083
页数:9
相关论文
共 47 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Si electrodes for li-ion batteries - A new way to look at an old problem [J].
Beattie, S. D. ;
Larcher, D. ;
Morcrette, M. ;
Simon, B. ;
Tarascon, J. -M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (02) :A158-A163
[3]   ALL-SOLID LITHIUM ELECTRODES WITH MIXED-CONDUCTOR MATRIX [J].
BOUKAMP, BA ;
LESH, GC ;
HUGGINS, RA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1981, 128 (04) :725-729
[4]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[5]   A High-Energy Li-Ion Battery Using a Silicon-Based Anode and a Nano-Structured Layered Composite Cathode [J].
Chae, Changju ;
Noh, Hyung-Joo ;
Lee, Jung Kyoo ;
Scrosati, Bruno ;
Sun, Yang-Kook .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (20) :3036-3042
[6]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[7]   Nanosilicon-Coated Graphene Granules as Anodes for Li-Ion Batteries [J].
Evanoff, Kara ;
Magasinski, Alexandre ;
Yang, Junbing ;
Yushin, Gleb .
ADVANCED ENERGY MATERIALS, 2011, 1 (04) :495-498
[8]   Stable Cycling of SiO2 Nanotubes as High-Performance Anodes for Lithium-Ion Batteries [J].
Favors, Zachary ;
Wang, Wei ;
Bay, Hamed Hosseini ;
George, Aaron ;
Ozkan, Mihrimah ;
Ozkan, Cengiz S. .
SCIENTIFIC REPORTS, 2014, 4
[9]   A facile synthesis of graphite/silicon/graphene spherical composite anode for lithium-ion batteries [J].
Gan, Lei ;
Guo, Huajun ;
Wang, Zhixing ;
Li, Xinhai ;
Peng, Wenjie ;
Wang, Jiexi ;
Huang, Silin ;
Su, Mingru .
ELECTROCHIMICA ACTA, 2013, 104 :117-123
[10]   Cyclability study of silicon-carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy [J].
Guo, Juchen ;
Sun, Ann ;
Chen, Xilin ;
Wang, Chunsheng ;
Manivannan, Ayyakkannu .
ELECTROCHIMICA ACTA, 2011, 56 (11) :3981-3987