The transient solution to M/Ek/1 queue

被引:27
作者
Griffiths, JD [1 ]
Leonenko, GM [1 ]
Williams, JE [1 ]
机构
[1] Cardiff Univ, Sch Math, Cardiff CF24 4AG, Wales
关键词
Erlang service times; transient solution; generalisated modified Bessel function;
D O I
10.1016/j.orl.2005.05.010
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The single-channel queueing equations considered in this paper are characterised by Poisson-distributed arrivals and Erlang service times. The transient phase probabilities are obtained in terms of a new generalisation of the modified Bessel function, and the mean waiting time in the queue is evaluated. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:349 / 354
页数:6
相关论文
共 28 条
[1]  
[Anonymous], TREATISE GENERATING
[2]  
[Anonymous], 1997, OPTIMIZATION, DOI DOI 10.1080/02331939708844299
[3]  
[Anonymous], 2000, DIFFERENCE EQUATIONS
[4]  
CHAMPERNOWNE DG, 1956, J ROY STAT SOC B, V18, P125
[5]   MULTIDIMENSIONAL TRANSFORM INVERSION WITH APPLICATIONS TO THE TRANSIENT M/G/1 QUEUE [J].
Choudhury, Gagan L. ;
Lucantoni, David M. ;
Whitt, Ward .
ANNALS OF APPLIED PROBABILITY, 1994, 4 (03) :719-740
[6]   ON A NEW FORMULA FOR THE TRANSIENT STATE PROBABILITIES FOR M/M/1 QUEUES AND COMPUTATIONAL IMPLICATIONS [J].
CONOLLY, BW ;
LANGARIS, C .
JOURNAL OF APPLIED PROBABILITY, 1993, 30 (01) :237-246
[7]  
CONOLLY BW, 1957, J ROY STAT SOC, V20, P165
[8]  
Feller W., 1966, INTRO PROBABILITY TH
[9]   DIFFUSION APPROXIMATIONS AND MODELS FOR CERTAIN CONGESTION PROBLEMS [J].
GAVER, DP .
JOURNAL OF APPLIED PROBABILITY, 1968, 5 (03) :607-&
[10]  
GRIFFITHS JD, 2005, IN PRESS FRACTIONAL