DISSIPATIVE SOLUTIONS AND THE INCOMPRESSIBLE INVISCID LIMITS OF THE COMPRESSIBLE MAGNETOHYDRODYNAMIC SYSTEM IN UNBOUNDED DOMAINS

被引:18
作者
Feireisl, Eduard [1 ]
Novotny, Antonin [2 ]
Sun, Yongzhong [3 ]
机构
[1] Acad Sci Czech Republ, Inst Math, CR-11567 Prague 1, Czech Republic
[2] Univ Sud Toulon Var, EA 2134, IMATH, F-83957 La Garde, France
[3] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
关键词
Compressible MHD system; inviscid limit; incompressible limit; WEAK SOLUTIONS; EQUATIONS; PERTURBATIONS; EVOLUTION; BOUNDARY; WAVES;
D O I
10.3934/dcds.2014.34.121
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the compressible Navier-Stokes system coupled with the Maxwell equations governing the time evolution of the magnetic field. We introduce a relative entropy functional along with the related concept of dissipative solution. As an application of the theory, we show that for small values of the Mach number and large Reynolds number, the global in time weak (dissipative) solutions converge to the ideal MHD system describing the motion of an incompressible, inviscid, and electrically conducting fluid. The proof is based on frequency localized Strichartz estimates for the Neumann Laplacean on unbounded domains.
引用
收藏
页码:121 / 143
页数:23
相关论文
共 37 条
[1]   From kinetic equations to multidimensional isentropic gas dynamics before shocks [J].
Berthelin, F ;
Vasseur, A .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 36 (06) :1807-1835
[2]   Global Strichartz estimates for nontrapping geometries: About an article by H. Smith and C. Sogge [J].
Burq, N .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (9-10) :1675-1683
[3]   Maximal functions associated to filtrations [J].
Christ, M ;
Kiselev, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 179 (02) :409-425
[4]  
D. M. \E{\i\}u DUS, 1969, Uspehi Mat. Nauk, V24, P91
[5]  
DAFERMOS CM, 1979, ARCH RATION MECH AN, V70, P167, DOI 10.1007/BF00250353
[6]   Low Mach number limit for viscous compressible flows [J].
Danchin, R .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (03) :459-475
[7]   SCATTERING OF ELASTIC-WAVES IN A PERTURBED ISOTROPIC HALF-SPACE WITH A FREE-BOUNDARY - THE LIMITING ABSORPTION PRINCIPLE [J].
DERMENJIAN, Y ;
GUILLOT, JC .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1988, 10 (02) :87-124
[8]   Regularity of weak solutions of the compressible isentropic Navier-Stokes equations [J].
Desjardins, B .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1997, 22 (5-6) :977-1008
[9]   The equations of magnetohydrodynamics: On the interaction between matter and radiation in the evolution of gaseous stars [J].
Ducomet, Bernard ;
Feireisl, Eduard .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 266 (03) :595-629
[10]   Bounds on resonances for the Laplacian on perturbations of half-space [J].
Edward, J ;
Pravica, D .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 30 (06) :1175-1184