Dimension-raising theorems for cohomological and extension dimensions

被引:0
作者
Skordev, Gencho [1 ]
Valov, Vesko [2 ]
机构
[1] Univ Bremen, Dept Math & Comp Sci, Ctr Complex Syst & Visualizat, D-28359 Bremen, Germany
[2] Nipissing Univ, Dept Comp Sci & Math, N Bay, ON P1B 8L7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Metric spaces; Cohomological dimension; Extension dimension; Sheaves;
D O I
10.1016/j.topol.2007.04.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish cohomological and extension dimension versions of the Hurewicz dimension-raising theorem. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2090 / 2101
页数:12
相关论文
共 34 条
[1]  
[Anonymous], 1975, DIMENSION THEORY GEN
[2]  
Borel A., 1960, SEMINAR TRANSFORMATI, V46
[3]  
Bredon G. E., 1997, SHEAF THEORY
[4]  
DRANISHNIKOV A, MATHGN0501523
[5]  
Dranishnikov A. N., 1991, MAT SBORNIK, V182, P1300
[6]   Light maps and extensional dimension [J].
Dranishnikov, AN ;
Uspenskij, VV .
TOPOLOGY AND ITS APPLICATIONS, 1997, 80 (1-2) :91-99
[7]  
DRANISHNIKOV AN, 1988, USP MAT NAUK, V43, P1
[8]  
DRANISHNIKOV AN, 1996, P STEKLOV I MATH, V212, P1
[9]   COHOMOLOGICAL DIMENSION AND METRIZABLE-SPACES [J].
DYDAK, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 337 (01) :219-234
[10]   Extension dimension for paracompact spaces [J].
Dydak, J .
TOPOLOGY AND ITS APPLICATIONS, 2004, 140 (2-3) :227-243