Plasmonic coupling in closed-packed ordered gallium nanoparticles

被引:24
作者
Catalan-Gomez, S. [1 ]
Bran, C. [2 ]
Vazquez, M. [2 ]
Vazquez, L. [2 ]
Pau, J. L. [1 ]
Redondo-Cubero, A. [1 ]
机构
[1] Univ Autonoma Madrid, Grp Elect & Semicond, Dept Fis Aplicada, E-28049 Madrid, Spain
[2] Consejo Super Invest Cient ICMM CSIC, Inst Ciencia Mat Madrid, E-28049 Madrid, Spain
关键词
OPTICAL-PROPERTIES; INTERBAND-TRANSITIONS; GOLD; LIGHT; UV; ULTRAVIOLET; RESONANCE; BEHAVIOR; SINGLE; ARRAYS;
D O I
10.1038/s41598-020-61090-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Plasmonic gallium (Ga) nanoparticles (NPs) are well known to exhibit good performance in numerous applications such as surface enhanced fluorescence and Raman spectroscopy or biosensing. However, to reach the optimal optical performance, the strength of the localized surface plasmon resonances (LSPRs) must be enhanced particularly by suitable narrowing the NP size distribution among other factors. With this purpose, our last work demonstrated the production of hexagonal ordered arrays of Ga NPs by using templates of aluminium (Al) shallow pit arrays, whose LSPRs were observed in the VIS region. The quantitative analysis of the optical properties by spectroscopic ellipsometry confirmed an outstanding improvement of the LSPR intensity and full width at half maximum (FWHM) due to the imposed ordering. Here, by engineering the template dimensions, and therefore by tuning Ga NPs size, we expand the LSPRs of the Ga NPs to cover a wider range of the electromagnetic spectrum from the UV to the IR regions. More interestingly, the factors that cause this optical performance improvement are studied with the universal plasmon ruler equation, supported with discrete dipole approximation simulations. The results allow us to conclude that the plasmonic coupling between NPs originated in the ordered systems is the main cause for the optimized optical response.
引用
收藏
页数:11
相关论文
共 79 条
[1]   Optical properties of gallium oxide films deposited by electron-beam evaporation [J].
Al-Kuhaili, MF ;
Durrani, SMA ;
Khawaja, EE .
APPLIED PHYSICS LETTERS, 2003, 83 (22) :4533-4535
[2]   Shape Matters: Plasmonic Nanoparticle Shape Enhances Interaction with Dielectric Substrate [J].
Albella, Pablo ;
Garcia-Cueto, Borja ;
Gonzalez, Francisco ;
Moreno, Fernando ;
Wu, Pae C. ;
Kim, Tong-Ho ;
Brown, April ;
Yang, Yang ;
Everitt, Henry O. ;
Videen, Gorden .
NANO LETTERS, 2011, 11 (09) :3531-3537
[3]  
[Anonymous], 2007, Plasmonics: Fundamentals and Applications, DOI DOI 10.1007/0-387-37825-1
[4]  
[Anonymous], 2015, NANOPOROUS ALUMINA F
[5]   A photonic switch based on a gigantic, reversible optical nonlinearity of liquefying gallium [J].
Bennett, PJ ;
Dhanjal, S ;
Petropoulos, P ;
Richardson, DJ ;
Zheludev, NI ;
Emelyanov, VI .
APPLIED PHYSICS LETTERS, 1998, 73 (13) :1787-1789
[6]   Domain wall pinning in FeCoCu bamboo-like nanowires [J].
Berganza, Eider ;
Bran, Cristina ;
Jaafar, Miriam ;
Vazquez, Manuel ;
Asenjo, Agustina .
SCIENTIFIC REPORTS, 2016, 6
[7]   Direct observation of transverse and vortex metastable magnetic domains in cylindrical nanowires [J].
Bran, C. ;
Fernandez-Roldan, J. A. ;
Palmero, E. M. ;
Berganza, E. ;
Guzman, J. ;
del Real, R. P. ;
Asenjo, A. ;
Fraile Rodriguez, A. ;
Foerster, M. ;
Aballe, L. ;
Chubykalo-Fesenko, O. ;
Vazquez, M. .
PHYSICAL REVIEW B, 2017, 96 (12)
[8]   Self-assembly of highly ordered plasmonic gallium nanoparticles driven by nanopatterning [J].
Catalan-Gomez, S. ;
Bran, C. ;
Gordillo, N. ;
Nucciarelli, F. ;
Vazquez, M. ;
Pau, J. L. ;
Redondo-Cubero, A. .
NANO FUTURES, 2018, 2 (04)
[9]   Size-selective breaking of the core-shell structure of gallium nanoparticles [J].
Catalan-Gomez, S. ;
Redondo-Cubero, A. ;
Palomares, F. J. ;
Vazquez, L. ;
Nogales, E. ;
Nucciarelli, F. ;
Mendez, B. ;
Gordillo, N. ;
Pau, J. L. .
NANOTECHNOLOGY, 2018, 29 (35)
[10]   Tunable plasmonic resonance of gallium nanoparticles by thermal oxidation at low temperatures [J].
Catalan-Gomez, S. ;
Redondo-Cubero, A. ;
Palomares, F. J. ;
Nucciarelli, F. ;
Pau, J. L. .
NANOTECHNOLOGY, 2017, 28 (40)