Pullback dynamics of 3D Navier-Stokes equations with nonlinear viscosity

被引:11
作者
Yang, Xin-Guang [1 ]
Feng, Baowei [2 ]
Wang, Shubin [3 ]
Lu, Yongjin [4 ]
Ma, To Fu [5 ]
机构
[1] Henan Normal Univ, Dept Math & Informat Sci, Xinxiang 453007, Peoples R China
[2] Southwestern Univ Finance & Econ, Coll Econ Math, Chengdu 611130, Sichuan, Peoples R China
[3] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
[4] Virginia State Univ, Dept Math & Econ, Petersburg, VA 23806 USA
[5] Univ Sao Paulo, Inst Math & Comp Sci, BR-13566590 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会; 美国国家科学基金会;
关键词
Navier-Stokes equations; Nonlinear viscosity; Pullback attractors; Fractal dimension; Ladyzhenskaya model; UPPER SEMICONTINUITY; ATTRACTORS; DIMENSION; EXISTENCE;
D O I
10.1016/j.nonrwa.2019.01.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with pullback dynamics of 3D Navier-Stokes equations with variable viscosity and subject to time-dependent external forces. Our main result establishes the existence of finite-dimensional pullback attractors in a general setting involving tempered universes. We also present a sufficient condition on the viscosity coefficients that guarantees the attractors are nontrivial. We end the paper by showing the upper semi-continuity of pullback attractors as the non-autonomous perturbation vanishes. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:337 / 361
页数:25
相关论文
共 41 条
[1]  
[Anonymous], 1933, J. Math. Pures Appl.
[2]  
Boyer F., 2013, APPL MATH SCI, V183
[3]   Upper semicontinuity of attractors for small random perturbations of dynamical systems [J].
Caraballo, T ;
Langa, JA ;
Robinson, JC .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1998, 23 (9-10) :1557-1581
[4]   Pullback attractors for asymptotically compact non-autonomous dynamical systems [J].
Caraballo, T ;
Lukaszewicz, G ;
Real, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (03) :484-498
[5]  
Carvalho A. N., 2013, APPL MATH SCI, V182
[6]   The long-time dynamics of 3D non-autonomous Navier-Stokes equations with variable viscosity [J].
Chen, Yongqiang ;
Yang, Xin-Guang ;
Si, Mengmeng .
SCIENCEASIA, 2018, 44 (01) :18-26
[7]  
Chepyzhov VV, 2004, DISCRETE CONT DYN-A, V10, P117
[8]  
Chepyzhov VV, 2001, ATTRACTORS EQUATIONS
[9]   GLOBAL LYAPUNOV EXPONENTS, KAPLAN-YORKE FORMULAS AND THE DIMENSION OF THE ATTRACTORS FOR 2D NAVIER-STOKES EQUATIONS [J].
CONSTANTIN, P ;
FOIAS, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (01) :1-27
[10]   ON THE DIMENSION OF THE ATTRACTORS IN TWO-DIMENSIONAL TURBULENCE [J].
CONSTANTIN, P ;
FOIAS, C ;
TEMAM, R .
PHYSICA D, 1988, 30 (03) :284-296