THE STRUCTURED DISTANCE TO NEARLY NORMAL MATRICES

被引:0
作者
Smithies, Laura [1 ]
机构
[1] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
来源
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS | 2009年 / 36卷
关键词
nearness to normality; tridiagonal matrix; Krein spaces; eigenvalue estimation; Gersgorin type sets;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we examine the algebraic variety I-Lambda of complex tridiagonal n x n matrices T, such that T*T - TT* = Lambda, where Lambda is a fixed real diagonal matrix. If Lambda = 0 then I-Lambda is N-T, the set of tridiagonal normal matrices. For Lambda not equal 0, we identify the structure of the matrices in I-Lambda and analyze the suitability for eigenvalue estimation using normal matrices for elements of I-Lambda. We also compute the Frobenius norm of elements of I-Lambda, describe the algebraic subvariety M-Lambda consisting of elements of I-Lambda with minimal Frobenius norm, and calculate the distance from a given complex tridiagonal matrix to I-Lambda.
引用
收藏
页码:99 / 112
页数:14
相关论文
共 8 条
[1]  
Bognar J., 1974, Indefinite Inner Product Spaces
[2]  
Fontes N, 2007, ELECTRON T NUMER ANA, V26, P320
[3]  
Horn R.A., 1994, TOPICS MATRIX ANAL, DOI DOI 10.1017/CBO9780511840371
[4]  
LANGER H, 1982, LECT NOTES MATH, V948, P1
[5]  
Noschese S, 2007, ELECTRON T NUMER ANA, V28, P65
[6]   A note on polar decomposition based Gersgorin-type sets [J].
Smithies, Laura .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (10) :2623-2627
[7]   Singular value decomposition Gersgorin sets [J].
Smithies, Laura ;
Varga, Richard S. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 417 (2-3) :370-380
[8]  
Varga R.S., 2004, Springer Series in Computational Mathematics, V36