High-efficiency nitrene-based crosslinking agent for robust dielectric layers and high-performance solution-processed organic field-effect transistors

被引:17
|
作者
Kim, Kyunghun [1 ]
Shin, Seongjun [2 ]
Kim, Se Hyun [3 ]
Lee, Jihoon [2 ,4 ]
An, Tae Kyu [2 ,4 ]
机构
[1] Pohang Univ Sci & Technol, Dept Chem Engn, Pohang 790784, South Korea
[2] Korea Natl Univ Transportat, Dept IT Convergence, 50 Daehak Ro, Chungju 27469, South Korea
[3] Yeungnam Univ, Sch Chem Engn, 280 Daehak Ro, Gyongsan 38541, Gyeongbuk, South Korea
[4] Korea Natl Univ Transportat, Dept Polymer Sci & Engn, 50 Daehak Ro, Chungju 27469, South Korea
基金
新加坡国家研究基金会;
关键词
Nitrene; Polystyrene; Patterning; Triethylsilylethynyl-anthradithiophene (TES-ADT); Organic field-effect transistors; LOW-VOLTAGE; POLYMER; GROWTH; FABRICATION; ROUGHNESS; MODE;
D O I
10.1016/j.apsusc.2019.02.106
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High-performance organic field-effect transistors (OFETs) need not only high-mobility organic semiconductors, but also suitable organic dielectric layers. OFETs with the polystyrene (PS) dielectric layer have shown superior electrical characteristics and operational stability levels due to the hydrophobicity of PS. However, PS is usually compatible with vacuum-evaporated semiconductors because the solution process dissolves the bottom PS layer, making it difficult to obtain a high-quality semiconducting film. In this study, we develop the chemically robust dielectric film 'FPS', made up of 5 wt% ethylene glycol bis(4-azido-2,3,5,6-tetrafluoro-benzoate) (sFPA) in a PS film. Addition of UV-responsive sFPA causes the film to become crosslinked after UV irradiation while maintaining its surface properties compared to the PS film. Crosslinking with a very small amount of sFPA is possible due to high crosslinking efficiency of sFPA, not requiring two specific functional groups. In addition, an as-cast FPS film is readily photo-patterned by UV irradiation with a shadow mask. The solution-processed TES-ADT semiconductor film shows a highly crystalline morphology on the FPS layer, and its OFETs show much higher field-effect mobility levels than those with the plain PS layer. These results are attributed to the chemical robustness of the FPS layer, and its favorable environment for growth of TES-ADT crystals. Therefore, we expect the FPS layer to be used as a versatile dielectric layer with various solution-processed semiconductors.
引用
收藏
页码:280 / 286
页数:7
相关论文
共 50 条
  • [21] Selective organization of solution-processed organic field-effect transistors
    Minari, Takeo
    Kano, Masataka
    Miyadera, Tetsuhiko
    Wang, Sui-Dong
    Aoyagi, Yoshinobu
    Seto, Mari
    Nemoto, Takashi
    Isoda, Seiji
    Tsukagoshi, Kazuhito
    APPLIED PHYSICS LETTERS, 2008, 92 (17)
  • [22] Solution-processed ambipolar organic field-effect transistors and inverters
    E. J. Meijer
    D. M. de Leeuw
    S. Setayesh
    E. van Veenendaal
    B. -H. Huisman
    P. W. M. Blom
    J. C. Hummelen
    U. Scherf
    T. M. Klapwijk
    Nature Materials, 2003, 2 : 678 - 682
  • [23] Solution-Processed, High-Performance Nanoribbon Transistors Based on Dithioperylene
    Jiang, Wei
    Zhou, Yan
    Geng, Hua
    Jiang, Shidong
    Yan, Shouke
    Hu, Wenping
    Wang, Zhaohui
    Shuai, Zhigang
    Pei, Jian
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (01) : 1 - 3
  • [24] Solution-processed ambipolar organic field-effect transistors and inverters
    Meijer, EJ
    De Leeuw, DM
    Setayesh, S
    Van Veenendaal, E
    Huisman, BH
    Blom, PWM
    Hummelen, JC
    Scherf, U
    Klapwijk, TM
    NATURE MATERIALS, 2003, 2 (10) : 678 - 682
  • [25] High-Performance Flexible Solution-Processed Organic Nonvolatile Memory Transistors
    Rahi, Sachin
    Raghuwanshi, Vivek
    Konwar, Gargi
    Tiwari, Shree Prakash
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2023, 70 (08) : 4338 - 4344
  • [26] Flexible and stable solution-processed organic field-effect transistors
    Hwang, D. K.
    Fuentes-Hernandez, C.
    Kim, J. B.
    Potscavage, W. J., Jr.
    Kippelen, B.
    ORGANIC ELECTRONICS, 2011, 12 (07) : 1108 - 1113
  • [27] Materials and Applications for Solution-Processed Organic Field-Effect Transistors
    Sirringhaus, Henning
    PROCEEDINGS OF THE IEEE, 2009, 97 (09) : 1570 - 1579
  • [28] Solution-Processed Organic-Inorganic Perovskite Field-Effect Transistors with High Hole Mobilities
    Matsushima, Toshinori
    Hwang, Sunbin
    Sandanayaka, Atula S. D.
    Qin, Chuanjiang
    Terakawa, Shinobu
    Fujihara, Takashi
    Yahiro, Masayuki
    Adachi, Chihaya
    ADVANCED MATERIALS, 2016, 28 (46) : 10275 - 10281
  • [29] High-performance and electrically stable solution-processed polymer field-effect transistors with a top-gate configuration
    Takagi, Kenichiro
    Nagase, Takashi
    Kobayashi, Takashi
    Kushida, Takashi
    Naito, Hiroyoshi
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2015, 54 (01) : 011601
  • [30] Solution-Processed Donor-Acceptor Polymer Nanowire Network Semiconductors For High-Performance Field-Effect Transistors
    Lei, Yanlian
    Deng, Ping
    Li, Jun
    Lin, Ming
    Zhu, Furong
    Ng, Tsz-Wai
    Lee, Chun-Sing
    Ong, Beng S.
    SCIENTIFIC REPORTS, 2016, 6