Comment on "Existence of heteroclinic orbits of the Shil'nikov type in a 3D quadratic autonomous chaotic system" [J. Math. Anal. Appl. 315 (2006) 106-119]

被引:18
作者
Algaba, Antonio [2 ]
Fernandez-Sanchez, Fernando [1 ]
Merino, Manuel [2 ]
Rodriguez-Luis, Alejandro J. [1 ]
机构
[1] Univ Seville, Dept Matemat Aplicada 2, ES Ingenieros, Seville 41092, Spain
[2] Univ Huelva, Fac Ciencias Expt, Dept Matemat, Huelva 21071, Spain
关键词
Heteroclinic orbit; Invariant set; Behavior of trajectory; Shil'nikov map; CHEN CIRCUIT; TIME-DELAY;
D O I
10.1016/j.jmaa.2012.01.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the referenced paper the existence of heteroclinic orbits of Shil'nikov type is proved by using the undetermined coefficient method, in a three-dimensional quadratic autonomous system. Here we show that the demonstration is incorrect. A misuse of a time-reversibility property leads the authors to consider an odd expression for the first component of the heteroclinic connection. It is evident that this odd expression can never represent the first component of a Shil'nikov heteroclinic connection, an orbit which is necessarily non-symmetric. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:99 / 101
页数:3
相关论文
共 14 条
[1]  
Algaba A, 2010, COMMUN NONLINEAR SCI, V15, P3058
[2]  
Algaba A., 2008, CHAOS, V18
[3]   Comment on "Heteroclinic orbits in Chen circuit with time delay" [Commun. Nonlinear Sci. Numer. Simulat. 15 (2010) 3058-3066] [J].
Algaba, Antonio ;
Fernandez-Sanchez, Fernando ;
Merino, Manuel ;
Rodriguez-Luis, Alejandro J. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (06) :2708-2710
[4]   Comment on "Sil'nikov chaos of the Liu system" [Chaos 18, 013113 (2008)] [J].
Algaba, Antonio ;
Fernandez-Sanchez, Fernando ;
Merino, Manuel ;
Rodriguez-Luis, Alejandro J. .
CHAOS, 2011, 21 (04)
[5]   Homoclinic shadowing and its application to chaotic systems [J].
Li Xiliang ;
Li Xuemei ;
Zheng Zuohuan .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (05) :1363-1375
[6]   Heteroclinic orbits in Chen circuit with time delay [J].
Ren, Hai Peng ;
Li, Wen Chao .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (10) :3058-3066
[7]   Shil'nikov heteroclinic orbits in a chaotic system [J].
Sun, Feng-Yun .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (25) :4429-4436
[8]   Shil'nikov Analysis of Homoclinic and Heteroclinic Orbits of the T System [J].
Van Gorder, Robert A. ;
Choudhury, S. Roy .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2011, 6 (02)
[9]   Existence of a new three-dimensional chaotic attractor [J].
Wang, Jiezhi ;
Chen, Zengqiang ;
Yuan, Zhuzhi .
CHAOS SOLITONS & FRACTALS, 2009, 42 (05) :3053-3057
[10]   Si'lnikov-type orbits of Lorenz-family systems [J].
Wang, Junwei ;
Zhao, Meichun ;
Zhang, Yanbin ;
Xiong, Xiaohua .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 375 (02) :438-446