Enhanced Resonant Tunneling in Symmetric 2D Semiconductor Vertical Heterostructure Transistors

被引:54
作者
Campbell, Philip M. [1 ,2 ]
Tarasov, Alexey [1 ]
Joiner, Corey A. [1 ]
Ready, William J. [2 ]
Vogel, Eric M. [1 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Georgia Tech Res Inst, Atlanta, GA 30332 USA
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
heterostructures; 2D materials; graphene; molybdenum disulfide; tunneling; resonance; negative differential resistance; MOLYBDENUM-DISULFIDE; GRAPHENE; MOS2; SUPERLATTICE; PERFORMANCE; FABRICATION; MICROSCOPY; DIODES; DEVICE;
D O I
10.1021/nn507174c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Tunneling transistors with negative differential resistance have widespread appeal for both digital and analog electronics. However, most attempts to demonstrate resonant tunneling devices, including graphene-insulator-graphene structures, have resulted in low peak-to-valley ratios, limiting their application. We theoretically demonstrate that vertical heterostructures consisting of two identical monolayer 2D transition-metal dichalcogenide semiconductor electrodes and a hexagonal boron nitride barrier result in a peak-to-valley ratio several orders of magnitude higher than the best that can be achieved using graphene electrodes. The peak-to-valley ratio is large even at coherence lengths on the order of a few nanometers, making these devices appealing for nanoscale electronics.
引用
收藏
页码:5000 / 5008
页数:9
相关论文
共 47 条
[11]   SUPERLATTICE AND NEGATIVE DIFFERENTIAL CONDUCTIVITY IN SEMICONDUCTORS [J].
ESAKI, L ;
TSU, R .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1970, 14 (01) :61-&
[12]   Single-particle tunneling in doped graphene-insulator-graphene junctions [J].
Feenstra, R. M. ;
Jena, Debdeep ;
Gu, Gong .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (04)
[13]   High-frequency capacitance of bipolar resonant tunneling diodes [J].
Fobelets, K ;
VanHoof, C ;
Genoe, J ;
Stake, J ;
Lundgren, L ;
Borghs, G .
JOURNAL OF APPLIED PHYSICS, 1996, 79 (02) :905-910
[14]   SURFACE-ROUGHNESS AT THE SI(100)-SIO2 INTERFACE [J].
GOODNICK, SM ;
FERRY, DK ;
WILMSEN, CW ;
LILIENTAL, Z ;
FATHY, D ;
KRIVANEK, OL .
PHYSICAL REVIEW B, 1985, 32 (12) :8171-8186
[15]   Bardeen's tunnelling theory as applied to scanning tunnelling microscopy: a technical guide to the traditional interpretation [J].
Gottlieb, Alex D. ;
Wesoloski, Lisa .
NANOTECHNOLOGY, 2006, 17 (08) :R57-R65
[16]   THE BOUND-STATE RESONANT TUNNELING TRANSISTOR (BSRTT) - FABRICATION, DC IV CHARACTERISTICS AND HIGH-FREQUENCY PROPERTIES [J].
HADDAD, GI ;
REDDY, UK ;
SUN, JP ;
MAINS, RK .
SUPERLATTICES AND MICROSTRUCTURES, 1990, 7 (04) :369-374
[17]   ELECTRON RESONANT TUNNELING IN SI/SIGE DOUBLE BARRIER DIODES [J].
ISMAIL, K ;
MEYERSON, BS ;
WANG, PJ .
APPLIED PHYSICS LETTERS, 1991, 59 (08) :973-975
[18]   Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides [J].
Jariwala, Deep ;
Sangwan, Vinod K. ;
Lauhon, Lincoln J. ;
Marks, Tobin J. ;
Hersam, Mark C. .
ACS NANO, 2014, 8 (02) :1102-1120
[19]   Off-zone-center or indirect band-gap-like hole transport in heterostructures [J].
Klimeck, G ;
Bowen, RC ;
Boykin, TB .
PHYSICAL REVIEW B, 2001, 63 (19)
[20]   Operating principles of vertical transistors based on monolayer two-dimensional semiconductor heterojunctions [J].
Lam, Kai Tak ;
Seol, Gyungseon ;
Guo, Jing .
APPLIED PHYSICS LETTERS, 2014, 105 (01)