Enhanced Resonant Tunneling in Symmetric 2D Semiconductor Vertical Heterostructure Transistors

被引:54
作者
Campbell, Philip M. [1 ,2 ]
Tarasov, Alexey [1 ]
Joiner, Corey A. [1 ]
Ready, William J. [2 ]
Vogel, Eric M. [1 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Georgia Tech Res Inst, Atlanta, GA 30332 USA
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
heterostructures; 2D materials; graphene; molybdenum disulfide; tunneling; resonance; negative differential resistance; MOLYBDENUM-DISULFIDE; GRAPHENE; MOS2; SUPERLATTICE; PERFORMANCE; FABRICATION; MICROSCOPY; DIODES; DEVICE;
D O I
10.1021/nn507174c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Tunneling transistors with negative differential resistance have widespread appeal for both digital and analog electronics. However, most attempts to demonstrate resonant tunneling devices, including graphene-insulator-graphene structures, have resulted in low peak-to-valley ratios, limiting their application. We theoretically demonstrate that vertical heterostructures consisting of two identical monolayer 2D transition-metal dichalcogenide semiconductor electrodes and a hexagonal boron nitride barrier result in a peak-to-valley ratio several orders of magnitude higher than the best that can be achieved using graphene electrodes. The peak-to-valley ratio is large even at coherence lengths on the order of a few nanometers, making these devices appealing for nanoscale electronics.
引用
收藏
页码:5000 / 5008
页数:9
相关论文
共 47 条
[1]   TUNNELLING FROM A MANY-PARTICLE POINT OF VIEW [J].
BARDEEN, J .
PHYSICAL REVIEW LETTERS, 1961, 6 (02) :57-&
[2]   Quantitative simulation of a resonant tunneling diode [J].
Bowen, RC ;
Klimeck, G ;
Lake, RK ;
Frensley, WR ;
Moise, T .
JOURNAL OF APPLIED PHYSICS, 1997, 81 (07) :3207-3213
[3]   Resonant tunnelling and negative differential conductance in graphene transistors [J].
Britnell, L. ;
Gorbachev, R. V. ;
Geim, A. K. ;
Ponomarenko, L. A. ;
Mishchenko, A. ;
Greenaway, M. T. ;
Fromhold, T. M. ;
Novoselov, K. S. ;
Eaves, L. .
NATURE COMMUNICATIONS, 2013, 4
[4]   Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures [J].
Britnell, L. ;
Gorbachev, R. V. ;
Jalil, R. ;
Belle, B. D. ;
Schedin, F. ;
Mishchenko, A. ;
Georgiou, T. ;
Katsnelson, M. I. ;
Eaves, L. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Leist, J. ;
Geim, A. K. ;
Novoselov, K. S. ;
Ponomarenko, L. A. .
SCIENCE, 2012, 335 (6071) :947-950
[5]   PSEUDOMORPHIC IN0.53GA0.47AS/ALAS/INAS RESONANT TUNNELING DIODES WITH PEAK-TO-VALLEY CURRENT RATIOS OF 30 AT ROOM-TEMPERATURE [J].
BROEKAERT, TPE ;
LEE, W ;
FONSTAD, CG .
APPLIED PHYSICS LETTERS, 1988, 53 (16) :1545-1547
[6]   RESONANT TUNNELING TRANSISTOR WITH QUANTUM WELL BASE AND HIGH-ENERGY INJECTION - A NEW NEGATIVE DIFFERENTIAL RESISTANCE DEVICE [J].
CAPASSO, F ;
KIEHL, RA .
JOURNAL OF APPLIED PHYSICS, 1985, 58 (03) :1366-1368
[7]   RESONANT TUNNELING IN SEMICONDUCTOR DOUBLE BARRIERS [J].
CHANG, LL ;
ESAKI, L ;
TSU, R .
APPLIED PHYSICS LETTERS, 1974, 24 (12) :593-595
[8]   Theory of graphene-insulator-graphene tunnel junctions [J].
de la Barrera, Sergio C. ;
Gao, Qin ;
Feenstra, Randall M. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2014, 32 (04)
[9]   Local Electronic Properties of Graphene on a BN Substrate via Scanning Tunneling Microscopy [J].
Decker, Regis ;
Wang, Yang ;
Brar, Victor W. ;
Regan, William ;
Tsai, Hsin-Zon ;
Wu, Qiong ;
Gannett, William ;
Zettl, Alex ;
Crommie, Michael F. .
NANO LETTERS, 2011, 11 (06) :2291-2295
[10]  
Duke C. B., 1969, Tunneling in Solids, V10