OAM-labeled free-space optical flow routing

被引:27
作者
Gao, Shecheng [1 ,2 ]
Lei, Ting [1 ,2 ]
Li, Yangjin [3 ]
Yuan, Yangsheng [1 ,2 ]
Xie, Zhenwei [1 ,2 ]
Li, Zhaohui [3 ]
Yuan, Xiaocong [1 ,2 ]
机构
[1] Shenzhen Univ, Nanophoton Res Ctr, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov, Coll Optoelect Engn, Shenzhen 518060, Peoples R China
[3] Jinan Univ, Inst Photon Technol, Guangzhou 510632, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
ORBITAL-ANGULAR-MOMENTUM; PHASE-ONLY ELEMENT; SWITCHING SOLUTIONS; DAMMANN GRATINGS; NETWORKS; COMMUNICATION; BEAMS; TRANSMISSION; TUTORIAL; CAPACITY;
D O I
10.1364/OE.24.021642
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Space-division multiplexing allows unprecedented scaling of bandwidth density for optical communication. Routing spatial channels among transmission ports is critical for future scalable optical network, however, there is still no characteristic parameter to label the overlapped optical carriers. Here we propose a free-space optical flow routing (OFR) scheme by using optical orbital angular moment (OAM) states to label optical flows and simultaneously steer each flow according to their OAM states. With an OAM multiplexer and a reconfigurable OAM demultiplexer, massive individual optical flows can be routed to the demanded optical ports. In the routing process, the OAM beams act as data carriers at the same time their topological charges act as each carrier's labels. Using this scheme, we experimentally demonstrate switching, multicasting and filtering network functions by simultaneously steer 10 input optical flows on demand to 10 output ports. The demonstration of data-carrying OFR with nonreturn-to-zero signals shows that this process enables synchronous processing of massive spatial channels and flexible optical network. (C) 2016 Optical Society of America
引用
收藏
页码:21642 / 21651
页数:10
相关论文
共 39 条
[1]   Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications [J].
Al-Fuqaha, Ala ;
Guizani, Mohsen ;
Mohammadi, Mehdi ;
Aledhari, Mohammed ;
Ayyash, Moussa .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2015, 17 (04) :2347-2376
[2]   Mixed vortex states of light as information carriers [J].
Bouchal, Z ;
Celechovsky, R .
NEW JOURNAL OF PHYSICS, 2004, 6 :1-15
[3]   Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers [J].
Bozinovic, Nenad ;
Yue, Yang ;
Ren, Yongxiong ;
Tur, Moshe ;
Kristensen, Poul ;
Huang, Hao ;
Willner, Alan E. ;
Ramachandran, Siddharth .
SCIENCE, 2013, 340 (6140) :1545-1548
[4]  
C. V. N. Index, 2015, FOR METH
[5]  
Cessa R., 2015, IEEE COMMUN SURV TUT, V17, P1391
[6]   Routing and Spectrum Allocation in Elastic Optical Networks: A Tutorial [J].
Chatterjee, Bijoy Chand ;
Sarma, Nityananda ;
Oki, Eiji .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2015, 17 (03) :1776-1800
[7]  
Ckilper D., 2014, OPT PHOTONICS NEWS, V25, P50
[8]   Holographic optical switching: The "ROSES" demonstrator [J].
Crossland, WA ;
Manolis, IG ;
Redmond, MM ;
Tan, KL ;
Wilkinson, TD ;
Holmes, MJ ;
Parker, TR ;
Chu, HH ;
Croucher, J ;
Handerek, VA ;
Warr, ST ;
Robertson, B ;
Bonas, IG ;
Franklin, R ;
Stace, C ;
White, HJ ;
Woolley, RA ;
Henshall, G .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2000, 18 (12) :1845-1854
[9]   Error-Correction Coded Orbital-Angular-Momentum Modulation for FSO Channels Affected by Turbulence [J].
Djordjevic, Ivan B. ;
Anguita, Jaime A. ;
Vasic, Bane .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2012, 30 (17) :2846-2852
[10]   Capacity Trends and Limits of Optical Communication Networks [J].
Essiambre, Rene-Jean ;
Tkach, Robert W. .
PROCEEDINGS OF THE IEEE, 2012, 100 (05) :1035-1055