Multienvironment and Multitrait Genomic Selection Models in Unbalanced Early-Generation Wheat Yield Trials

被引:44
作者
Ward, Brian P. [1 ,2 ]
Brown-Guedira, Gina [3 ]
Tyagi, Priyanka [2 ]
Kolb, Frederic L. [4 ]
Van Sanford, David A. [5 ]
Sneller, Clay H. [6 ]
Griffey, Carl A. [1 ]
机构
[1] Virginia Tech, Dept Crop & Soil Environm Sci, Blacksburg, VA 24061 USA
[2] North Carolina State Univ, Dept Crop & Soil Sci, Raleigh, NC 27695 USA
[3] USDA ARS, Plant Sci Res Unit, Raleigh, NC 27695 USA
[4] Univ Illinois, Dept Crop Sci, Urbana, IL 61801 USA
[5] Univ Kentucky, Dept Plant & Soil Sci, Lexington, KY 40546 USA
[6] Ohio State Univ, Ohio Agr Res & Dev Ctr, Wooster, OH 44691 USA
基金
美国食品与农业研究所;
关键词
X ENVIRONMENT INTERACTION; MULTIPLE-TRAIT; PREDICTION ACCURACY; BREEDING VALUES; MIXED MODELS; GRAIN-YIELD; ASSOCIATION; VARIETY; PEDIGREE; DENSITY;
D O I
10.2135/cropsci2018.03.0189
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The majority of studies evaluating genomic selection (GS) for plant breeding have used single-trait, single-site models that ignore genotype x environment interaction (GEI) effects. However, such studies do not accurately reflect the complexities of many applied breeding programs, and previous papers have found that models that incorporate GEI effects and multiple traits can increase the accuracy of genomic estimated breeding values (GEBVs). This study's goal was to test GS methods for prediction in scenarios that simulate early-generation yield testing by correcting for field spatial variation, and fitting multienvironment and multitrait models on data for 14 traits of varying heritability evaluated in unbalanced designs across four environments. Corrections for spatial variation increased across-environment trait heritability by 25%, on average, but had little effect on model predictive ability. Results between all models were generally equivalent when predicting the performance of newly introduced genotypes. However, models incorporating GEI information and multiple traits increased prediction accuracy by up to 9.6% for low-heritability traits when phenotypic data were sparsely collected across environments. The results suggest that GS models using multiple traits and incorporating GEI effects may best be suited to predicting line performance in new environments when phenotypic data have already been collected across a subset of the total testing environments.
引用
收藏
页码:491 / 507
页数:17
相关论文
共 65 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]  
[Anonymous], INTENSIVE SOFT RED W
[3]  
[Anonymous], 2011, GENETICS POPULATIONS
[4]  
[Anonymous], 2017, GENOMIC SELECTION CR, DOI DOI 10.1007/978-3-319-63170-7_5
[5]  
AOAC, 2000, OFFICIAL METHODS ANA, V18
[6]   Shifting the limits in wheat research and breeding using a fully annotated reference genome [J].
Appels, Rudi ;
Eversole, Kellye ;
Feuillet, Catherine ;
Keller, Beat ;
Rogers, Jane ;
Stein, Nils ;
Pozniak, Curtis J. ;
Choulet, Frederic ;
Distelfeld, Assaf ;
Poland, Jesse ;
Ronen, Gil ;
Sharpe, Andrew G. ;
Pozniak, Curtis ;
Barad, Omer ;
Baruch, Kobi ;
Keeble-Gagnere, Gabriel ;
Mascher, Martin ;
Ben-Zvi, Gil ;
Josselin, Ambre-Aurore ;
Himmelbach, Axel ;
Balfourier, Francois ;
Gutierrez-Gonzalez, Juan ;
Hayden, Matthew ;
Koh, ChuShin ;
Muehlbauer, Gary ;
Pasam, Raj K. ;
Paux, Etienne ;
Rigault, Philippe ;
Tibbits, Josquin ;
Tiwari, Vijay ;
Spannagl, Manuel ;
Lang, Daniel ;
Gundlach, Heidrun ;
Haberer, Georg ;
Mayer, Klaus F. X. ;
Ormanbekova, Danara ;
Prade, Verena ;
Simkova, Hana ;
Wicker, Thomas ;
Swarbreck, David ;
Rimbert, Helene ;
Felder, Marius ;
Guilhot, Nicolas ;
Kaithakottil, Gemy ;
Keilwagen, Jens ;
Leroy, Philippe ;
Lux, Thomas ;
Twardziok, Sven ;
Venturini, Luca ;
Juhasz, Angela .
SCIENCE, 2018, 361 (6403) :661-+
[7]   Genomic Selection for Predicting Fusarium Head Blight Resistance in a Wheat Breeding Program [J].
Arruda, Marcio P. ;
Brown, Patrick J. ;
Lipka, Alexander E. ;
Krill, Allison M. ;
Thurber, Carrie ;
Kolb, Frederic L. .
PLANT GENOME, 2015, 8 (03)
[8]   Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.) [J].
Bassi, Filippo M. ;
Bentley, Alison R. ;
Charmet, Gilles ;
Ortiz, Rodomiro ;
Crossa, Jose .
PLANT SCIENCE, 2016, 242 :23-36
[9]   The importance of phenotypic data analysis for genomic prediction - a case study comparing different spatial models in rye [J].
Bernal-Vasquez, Angela-Maria ;
Moehring, Jens ;
Schmidt, Malthe ;
Schoenleben, Manfred ;
Schoen, Chris-Carolin ;
Piepho, Hans-Peter .
BMC GENOMICS, 2014, 15
[10]   TASSEL: software for association mapping of complex traits in diverse samples [J].
Bradbury, Peter J. ;
Zhang, Zhiwu ;
Kroon, Dallas E. ;
Casstevens, Terry M. ;
Ramdoss, Yogesh ;
Buckler, Edward S. .
BIOINFORMATICS, 2007, 23 (19) :2633-2635