Coupled vortex equations and moduli: deformation theoretic approach and Kahler geometry

被引:7
作者
Biswas, Indranil [1 ]
Schumacher, Georg [2 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
[2] Philipps Univ Marburg, Fachbereich Math & Informat, D-35032 Marburg, Germany
关键词
HOLOMORPHIC DETERMINANT BUNDLES; HERMITE-EINSTEIN BUNDLES; BOTT-CHERN FORMS; ANALYTIC-TORSION; DIMENSIONAL REDUCTION; RIEMANN SURFACES; SPACE; OPERATORS; MANIFOLDS; STABILITY;
D O I
10.1007/s00208-008-0292-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate differential geometric aspects of moduli spaces parametrizing solutions of coupled vortex equations over a compact Kahler manifold X. These solutions are known to be related to polystable triples via a Kobayashi-Hitchin type correspondence. Using a characterization of infinitesimal deformations in terms of the cohomology of a certain elliptic double complex, we construct a Hermitian structure on these moduli spaces. This Hermitian structure is proved to be Kahler. The proof involves establishing a fiber integral formula for the Hermitian form. We compute the curvature tensor of this Kahler form. When X is a Riemann surface, the holomorphic bisectional curvature turns out to be semi-positive. It is shown that in the case where X is a smooth complex projective variety, the Kahler form is the Chern form of a Quillen metric on a certain determinant line bundle.
引用
收藏
页码:825 / 851
页数:27
相关论文
共 19 条
[1]   Dimensional reduction, SL(2, C)-equivariant bundles and stable holomorphic chains [J].
Alvarez-Cónsul, L ;
García-Prada, O .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2001, 12 (02) :159-201
[2]   ANALYTIC-TORSION AND HOLOMORPHIC DETERMINANT BUNDLES .1. BOTT-CHERN FORMS AND ANALYTIC-TORSION [J].
BISMUT, JM ;
GILLET, H ;
SOULE, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 115 (01) :49-78
[3]   ANALYTIC-TORSION AND HOLOMORPHIC DETERMINANT BUNDLES .3. QUILLEN METRICS ON HOLOMORPHIC DETERMINANTS [J].
BISMUT, JM ;
GILLET, H ;
SOULE, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 115 (02) :301-351
[4]   ANALYTIC-TORSION AND HOLOMORPHIC DETERMINANT BUNDLES .2. DIRECT IMAGES AND BOTT-CHERN FORMS [J].
BISMUT, JM ;
GILLET, H ;
SOULE, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 115 (01) :79-126
[5]   AN INFINITESIMAL STUDY OF THE MODULI OF HITCHIN PAIRS [J].
BISWAS, I ;
RAMANAN, S .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1994, 49 :219-231
[6]  
BRADLOW S, 1995, LOND MATH S, V208, P15, DOI 10.1017/CBO9780511569319.003
[7]   Stable triples, equivariant bundles and dimensional reduction [J].
Bradlow, SB ;
GarciaPrada, O .
MATHEMATISCHE ANNALEN, 1996, 304 (02) :225-252
[8]   Moduli spaces of holomorphic triples over compact Riemann surfaces [J].
Bradlow, SB ;
García-Prada, O ;
Gothen, PB .
MATHEMATISCHE ANNALEN, 2004, 328 (1-2) :299-351
[9]   VORTICES IN HOLOMORPHIC LINE BUNDLES OVER CLOSED KAHLER-MANIFOLDS [J].
BRADLOW, SB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 135 (01) :1-17
[10]  
BRADLOW SB, 1991, J DIFFER GEOM, V33, P169