General matrix-valued inhomogeneous linear stochastic differential equations and applications

被引:4
作者
Duan, Jinqiao [1 ]
Yan, Jia-an [2 ]
机构
[1] IIT, Dept Appl Math, Chicago, IL 60616 USA
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100080, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
D O I
10.1016/j.spl.2008.02.013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The expressions of solutions for general n x m matrix-valued inhomogeneous linear stochastic differential equations are derived. This generalizes a result of Jaschke [Jaschke, S., 2003. A note on the inhomogeneous linear stochastic differential equation. Insurance: Mathematics and Finance 32, 461-464] for scalar inhomogeneous linear stochastic differential equations. As an application, some R-n vector-valued inhomogeneous nonlinear stochastic differential equations are converted to random differential equations, facilitating pathwise study of the solutions. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2361 / 2365
页数:5
相关论文
共 11 条
[1]  
[Anonymous], LECT NOTES MATH
[2]  
Arnold L., 1998, Springer Monographs in Mathematics
[3]   SOME APPLICATIONS OF FORMULA OF VARIABLE CHANGES TO SEMIMARTINGALES [J].
DOLEANSDADE, C .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1970, 16 (03) :181-+
[4]  
EMERY M, 1978, Z WAHRSCHEINLICHKEIT, V41, P241, DOI 10.1007/BF00534242
[5]   A note on the inhomogeneous linear stochastic differential equation [J].
Jaschke, S .
INSURANCE MATHEMATICS & ECONOMICS, 2003, 32 (03) :461-464
[6]  
KARANDIKAR RL, 1991, LECT NOTES MATH, V1485, P262
[7]  
LEANDRE R, 1985, LN MATH, P271
[8]  
MELNIKOV AV, 1996, FRONTIERS PURE APPL, V2, P121
[9]  
Protter P, 2005, Stochastic Integration and Differential Equations, V2nd
[10]  
Revuz Daniel, 1999, Grundlehren der mathematischen Wissenschaften, V3rd