Ultrafine Iron Pyrite (FeS2) Nanocrystals Improve Sodium-Sulfur and Lithium-Sulfur Conversion Reactions for Efficient Batteries

被引:268
作者
Douglas, Anna [1 ,2 ]
Carter, Rachel [2 ]
Oakes, Landon [1 ,2 ]
Share, Keith [1 ,2 ]
Cohn, Adam P. [2 ]
Pint, Cary L. [1 ,2 ,3 ]
机构
[1] Vanderbilt Univ, Interdisciplinary Mat Sci Program, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Dept Mech Engn, Nashville, TN 37235 USA
[3] Vanderbilt Inst Nanoscale Sci & Engn, Nashville, TN 37235 USA
基金
美国国家科学基金会;
关键词
iron pyrite; FeS2; nanoparticles; chemical transformations; quantum dots; sodium sulfur; lithium sulfur; batteries; LI-ION; NANOSTRUCTURED MATERIALS; PHASE-TRANSFORMATIONS; ENERGY-CONVERSION; ANODE MATERIALS; CRITICAL SIZE; NANO; PERFORMANCE; COMPOSITE; CAPACITY;
D O I
10.1021/acsnano.5b04700
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanocrystals with quantum-confined length scales are often considered impractical for metal-ion battery electrodes due to the dominance of solid-electrolyte interphase (HI) layer effects on the measured storage properties. Here we demonstrate that ultrafine sizes (similar to 4.5 nm, average) of iron pyrite, or FeS2, nanoparticles are advantageous to sustain reversible conversion reactions in sodium ion and lithium ion batteries. This is attributed to a nanoparticle size comparable to or smaller than the diffusion length of Fe during cation exchange, yielding thermodynamically reversible nanodomains of converted Fe metal and NaxS or LixS conversion products. This is compared to bulk-like electrode materials, where kinetic and thermodynamic limitations of surface-nucleated conversion products inhibit successive conversion cycles. Reversible capacities over 500 and 600 mAh/g for sodium and lithium storage are observed for ultrafine nanoparticles, with improved cycling and rate capability. Unlike alloying or intercalation processes, where SEI effects limit the performance of ultrafine nanoparticles, our work highlights the benefit of quantum dot length-scale nanocrystal electrodes for nanoscale metal sulfide compounds that store energy through chemical conversion reactions.
引用
收藏
页码:11156 / 11165
页数:10
相关论文
共 48 条
  • [1] Nanostructured materials for advanced energy conversion and storage devices
    Aricò, AS
    Bruce, P
    Scrosati, B
    Tarascon, JM
    Van Schalkwijk, W
    [J]. NATURE MATERIALS, 2005, 4 (05) : 366 - 377
  • [2] Universal Synthesis of Single-Phase Pyrite FeS2 Nanoparticles, Nanowires, and Nanosheets
    Bai, Yongxiao
    Yeom, Jihyeon
    Yang, Ming
    Cha, Sang-Ho
    Sun, Kai
    Kotov, Nicholas A.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (06) : 2567 - 2573
  • [3] Bardhan R, 2013, NAT MATER, V12, P905, DOI [10.1038/NMAT3716, 10.1038/nmat3716]
  • [4] Nanomaterials for rechargeable lithium batteries
    Bruce, Peter G.
    Scrosati, Bruno
    Tarascon, Jean-Marie
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) : 2930 - 2946
  • [5] Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions
    Cabana, Jordi
    Monconduit, Laure
    Larcher, Dominique
    Rosa Palacin, M.
    [J]. ADVANCED MATERIALS, 2010, 22 (35) : E170 - E192
  • [6] High-performance lithium battery anodes using silicon nanowires
    Chan, Candace K.
    Peng, Hailin
    Liu, Gao
    McIlwrath, Kevin
    Zhang, Xiao Feng
    Huggins, Robert A.
    Cui, Yi
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (01) : 31 - 35
  • [7] Chen J. H., 1975, Metallurgical Transactions B (Process Metallurgy), V6B, P331, DOI 10.1007/BF02913577
  • [8] Electrochemical characteristics of room temperature Li/FeS2 batteries with natural pyrite cathode
    Choi, Jae-Won
    Cheruvally, Gouri
    Ahn, Hyo-Jun
    Kim, Ki-Won
    Ahn, Jou-Hyeon
    [J]. JOURNAL OF POWER SOURCES, 2006, 163 (01) : 158 - 165
  • [9] Electrochemical properties of nickel-precipitated pyrite as cathode active material for lithium/pyrite cell
    Choi, Y. J.
    Kim, N. W.
    Kim, K. W.
    Cho, K. K.
    Cho, G. B.
    Ahn, H. J.
    Ahn, J. H.
    Ryu, K. S.
    Gu, H. B.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 485 (1-2) : 462 - 466
  • [10] ImageJ for microscopy
    Collins, Tony J.
    [J]. BIOTECHNIQUES, 2007, 43 (01) : 25 - +