Steam reformation of hydrogen sulfide

被引:12
作者
AuYeung, Nicholas [1 ]
Yokochi, Alexandre F. T. [1 ]
机构
[1] Oregon State Univ, Sch Chem Biol & Environm Engn, Corvallis, OR 97331 USA
基金
美国国家科学基金会;
关键词
Thermochemical water-splitting; Hydrogen sulfide; Sulfur-iodine cycle; Hydrogen production; CATALYTIC DECOMPOSITION; THERMAL-DECOMPOSITION; TUBULAR REACTOR; CHEMICAL-CYCLE; SULFUR; IODINE; THERMOLYSIS; H2S; KINETICS; EFFICIENCY;
D O I
10.1016/j.ijhydene.2013.01.029
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A modified version of the Sulfur-Iodine cycle, here called the Sulfur-Sulfur Cycle, offers an all-fluid route to thermochemical hydrogen and avoids implications of the corrosive HI-H2O azeotropic mixture: 4I(2(l)) + 4SO(2(l)) + 8H(2)O((l)) <-> 4H(2)SO(4(l)) + 8HI((l)) (120 degrees C) (1) 8HI((l)) + H2SO4(l) <-> H2S(g) + 4H(2)O((l)) + 4I(2(l)) (120 degrees C) (2) 3H(2)SO(4(g)) <-> 3H(2)O((g))+3SO(2)(g) + 1 1/2O(2(g)) (850 degrees C) (3) H2S(g) + 2H(2)O((g)) <-> SO2(g) + 3H(2(g)) (900-1500 degrees C) (4) The key step in the Sulfur-Sulfur cycle is the steam reformation of hydrogen sulfide, which is highly endothermic and has a positive Gibbs free energy change. The steam reformation of hydrogen sulfide was investigated under favorable circumstances (excessive dilution with steam and inert carrier) over a variety of catalytic and non-catalytic settings in a quartz tube. Successful results were obtained by pretreating a molybdenum wire with H2S at high temperature. Apparent Arrhenius parameters for both thermal splitting and steam reformation of hydrogen sulfide were determined. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:6304 / 6313
页数:10
相关论文
共 34 条
[1]   THERMOLYSIS OF HYDROGEN-SULFIDE IN AN OPEN-TUBULAR REACTOR [J].
ADESINA, AA ;
MEEYOO, V ;
FOULDS, G .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1995, 20 (10) :777-783
[2]   THERMOCHEMICAL DECOMPOSITION OF HYDROGEN-SULFIDE BY SOLAR-ENERGY [J].
BISHARA, A ;
SALMAN, OA ;
KHRAISHI, N ;
MARAFI, A .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1987, 12 (10) :679-685
[3]  
Bowman MG, 1991, THERMOCHEMICAL CYCLE
[4]   Economics of thermal dissociation of H2S to produce hydrogen [J].
Cox, BG ;
Clarke, PF ;
Pruden, BB .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1998, 23 (07) :531-544
[5]   THE REACTION OF SULFUR-DIOXIDE WITH WATER AND A HALOGEN - THE CASE OF IODINE - REACTION IN PRESENCE OF ORGANIC-SOLVENTS [J].
DEBENI, G ;
PIERINI, G ;
SPELTA, B .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1980, 5 (02) :141-149
[6]   HYDROGEN AND SULFUR FROM H2S-III - THE ECONOMICS OF A QUENCH PROCESS [J].
DIVER, RB ;
FLETCHER, EA .
ENERGY, 1985, 10 (07) :831-842
[7]   THERMOLYSIS OF HYDROGEN-SULFIDE IN A METAL-MEMBRANE REACTOR [J].
EDLUND, DJ ;
PLEDGER, WA .
JOURNAL OF MEMBRANE SCIENCE, 1993, 77 (2-3) :255-264
[8]   CATALYTIC DECOMPOSITION OF HYDROGEN-SULFIDE [J].
FUKUDA, K ;
DOKIYA, M ;
KAMEYAMA, T ;
KOTERA, Y .
INDUSTRIAL & ENGINEERING CHEMISTRY FUNDAMENTALS, 1978, 17 (04) :243-248
[9]   Survey of Bunsen reaction routes to improve the sulfur-iodine thermochemical water-splitting cycle [J].
Giaconia, Alberto ;
Caputo, Giampaolo ;
Sau, Salvatore ;
Prosini, Pier Paolo ;
Pozio, Alfonso ;
De Francesco, Massimo ;
Tarquini, Pietro ;
Nardi, Luigi .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (09) :4041-4048
[10]   Upper bound and best estimate of the efficiency of the iodine sulphur cycle [J].
Goldstein, S ;
Borgard, JM ;
Vitart, X .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2005, 30 (06) :619-626