Tunable Localized Surface Plasmon-Enabled Broadband Light-Harvesting Enhancement for High-Efficiency Panchromatic Dye-Sensitized Solar Cells

被引:153
作者
Dang, Xiangnan [1 ,2 ]
Qi, Jifa [1 ,2 ]
Klug, Matthew T. [2 ,3 ]
Chen, Po-Yen [2 ,4 ]
Yun, Dong Soo [2 ]
Fang, Nicholas X. [3 ]
Hammond, Paula T. [2 ,4 ]
Belcher, Angela M. [1 ,2 ,5 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[2] MIT, David H Koch Inst Integrat Canc Res, Cambridge, MA 02139 USA
[3] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[4] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[5] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Tunable localized surface plasmon; light harvesting enhancement; panchromatic dye-sensitized solar cells; multiple-core-shell nanoparticles; NANOSTRUCTURES; NANOPARTICLES;
D O I
10.1021/nl3043823
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In photovoltaic devices, light harvesting (LH) and carrier collection have opposite relations with the thickness of the photoactive layer, which imposes a fundamental compromise for the power conversion efficiency (PCE). Unbalanced LH at different wavelengths further reduces the achievable PCE. Here, we report a novel approach to broadband balanced LH and panchromatic solar energy conversion using multiple-core-shell structured oxide-metaloxide plasmonic nanoparticles. These nanoparticles feature tunable localized surface plasmon resonance frequencies and the required thermal stability during device fabrication. By simply blending the plasmonic nanoparticles with available photoactive materials, the broadband LH of practical photovoltaic devices can be significantly enhanced. We demonstrate a panchromatic dye-sensitized solar cell with an increased PCE from 8.3% to 10.8%, mainly through plasmon-enhanced photoabsorption in the otherwise less harvested region of solar spectrum. This general and simple strategy also highlights easy fabrication, and may benefit solar cells using other photoabsorbers or other types of solar-harvesting devices.
引用
收藏
页码:637 / 642
页数:6
相关论文
共 31 条
[1]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[2]   Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers [J].
Aydin, Koray ;
Ferry, Vivian E. ;
Briggs, Ryan M. ;
Atwater, Harry A. .
NATURE COMMUNICATIONS, 2011, 2
[3]   Plasmonic Dye-Sensitized Solar Cells Using Core-Shell Metal-Insulator Nanoparticles [J].
Brown, Michael D. ;
Suteewong, Teeraporn ;
Kumar, R. Sai Santosh ;
D'Innocenzo, Valerio ;
Petrozza, Annamaria ;
Lee, Michael M. ;
Wiesner, Ulrich ;
Snaith, Henry J. .
NANO LETTERS, 2011, 11 (02) :438-445
[4]   Computational Modeling of Plasmon-Enhanced Light Absorption in a Multicomponent Dye Sensitized Solar Cell [J].
Chen, Hanning ;
Blaber, Martin G. ;
Standridge, Stacey D. ;
DeMarco, Erica J. ;
Hupp, Joseph T. ;
Ratner, Mark A. ;
Schatz, George C. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (18) :10215-10221
[5]   Know Thy Nano Neighbor. Plasmonic versus Electron Charging Effects of Metal Nanoparticles in Dye-Sensitized Solar Cells [J].
Choi, Hyunbong ;
Chen, Wei Ta ;
Kamat, Prashant V. .
ACS NANO, 2012, 6 (05) :4418-4427
[6]   All-solid-state dye-sensitized solar cells with high efficiency [J].
Chung, In ;
Lee, Byunghong ;
He, Jiaqing ;
Chang, Robert P. H. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 485 (7399) :486-U94
[7]   Molecular cosensitization for efficient panchromatic dye-sensitized solar cells [J].
Cid, Juan-Jose ;
Yum, Jun-Ho ;
Jang, Song-Rim ;
Nazeeruddin, Mohammad K. ;
Ferrero, Eugenia Martinez ;
Palomares, Emilio ;
Ko, Jaejung ;
Graetzel, Michael ;
Torres, Tomas .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (44) :8358-8362
[8]  
Dang XN, 2011, NAT NANOTECHNOL, V6, P377, DOI [10.1038/NNANO.2011.50, 10.1038/nnano.2011.50]
[9]   Plasmon-Enhanced Photocatalytic Activity of Iron Oxide on Gold Nanopillars [J].
Gao, Hanwei ;
Liu, Chong ;
Jeong, Hoon Eui ;
Yang, Peidong .
ACS NANO, 2012, 6 (01) :234-240
[10]   Plasmonic Near-Field Absorbers for Ultrathin Solar Cells [J].
Haegglund, Carl ;
Apell, S. Peter .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (10) :1275-1285