Numerical simulation of wave propagation in frozen porous media

被引:0
|
作者
Carcione, JM [1 ]
Seriani, G [1 ]
机构
[1] Ist Nazl Oceanog & Geofis Sperimentale, Trieste, Italy
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We propose a numerical algorithm for simulating wave propagation in frozen porous media. The original theory assumes that there is no direct contact between solid grains and ice (we include the grain-ice interaction), and predicts three compressional waves and two shear waves. The wavefield is obtained with a grid-method based on the Fourier differential operator and a 4th-order Runge-Kutta time-integration algorithm. Since the presence of slow diffusive waves makes the differential equations stiff, a time-splitting integration algorithm is used to solved the stiff part with an analytical technique.
引用
收藏
页码:771 / 775
页数:5
相关论文
共 50 条
  • [1] Wave simulation in frozen porous media
    Carcione, JM
    Seriani, G
    JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 170 (02) : 676 - 695
  • [2] Wave propagation in anisotropic porous media: Plane-wave theory and numerical simulation
    Carcione, Jose M.
    Journal of the Acoustical Society of America, 1996, 99 (05):
  • [3] Wave propagation in anisotropic, saturated porous media: Plane-wave theory and numerical simulation
    Carcione, JM
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1996, 99 (05): : 2655 - 2666
  • [4] Numerical simulation of wave propagation in anisotropic media
    Petrov, I. B.
    Favorskaya, A. V.
    Vasyukov, A. V.
    Ermakov, A. S.
    Beklemysheva, K. A.
    Kazakov, A. O.
    Novikov, A. V.
    DOKLADY MATHEMATICS, 2014, 90 (03) : 778 - 780
  • [5] Numerical simulation of wave propagation in anisotropic media
    I. B. Petrov
    A. V. Favorskaya
    A. V. Vasyukov
    A. S. Ermakov
    K. A. Beklemysheva
    A. O. Kazakov
    A. V. Novikov
    Doklady Mathematics, 2014, 90 : 778 - 780
  • [6] Extension of biot's theory of wave propagation to frozen porous media
    1600, American Inst of Physics, Woodbury, NY, USA (96):
  • [7] Numerical Simulation of Wave Propagation in a Fractured Porous Medium
    A. A. Gubaidullin
    O. Yu. Boldyreva
    D. N. Dudko
    Lobachevskii Journal of Mathematics, 2022, 43 : 3471 - 3477
  • [8] Numerical Simulation of Wave Propagation in a Fractured Porous Medium
    Gubaidullin, A. A.
    Boldyreva, O. Yu.
    Dudko, D. N.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (12) : 3471 - 3477
  • [9] Numerical simulation of elastic wave propagation in anisotropic media
    Zhang, JF
    Liu, TL
    ACTA MECHANICA SOLIDA SINICA, 2000, 13 (01) : 50 - 59
  • [10] Numerical simulation of elastic wave propagation in inhomogeneous media
    Zhang, JF
    Li, YM
    WAVE MOTION, 1997, 25 (02) : 109 - 125