Orthogonal polynomials and connection to generalized Motzkin numbers for higher-order Euler polynomials

被引:3
作者
Jiu, Lin [1 ]
Shi, Diane Yahui [2 ]
机构
[1] Dalhousie Univ, Dept Math & Stat, 6316 Coburg Rd, Halifax, NS B3H 4R2, Canada
[2] Tianjin Univ, Sch Math, 92 Weijin Rd, Tianjin 300072, Peoples R China
基金
美国国家科学基金会;
关键词
Higher-order Euler polynomials; Orthogonal polynomial; Meixner-Pollaczek polynomial; Generalized Motzkin number; BERNOULLI;
D O I
10.1016/j.jnt.2018.11.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the higher-order Euler polynomials and give the corresponding monic orthogonal polynomials, which are the Meixner-Pollaczek polynomials with certain arguments and constant factors. Moreover, we obtain a connection to the generalized Motzkin number, which leads to a new recurrence formula and a matrix representation for the higher-order Euler polynomials. Analogue on Bernoulli polynomials is presented in the end. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:389 / 402
页数:14
相关论文
共 16 条
[1]  
Al-Salam W. A., 1959, Portugal. Math., V18, P91
[2]   CONVOLUTIONS OF ORTHONORMAL POLYNOMIALS [J].
ALSALAM, WA ;
CHIHARA, TS .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1976, 7 (01) :16-28
[3]  
[Anonymous], 2015, CATALAN NUMBERS
[4]  
[Anonymous], 1956, Canadian Journal of Mathematics, DOI [10.4153/CJM-1956-034-1, DOI 10.4153/CJM-1956-034-1]
[5]   BERNOULLI AND EULER NUMBERS AND ORTHOGONAL POLYNOMIALS [J].
CARLITZ, L .
DUKE MATHEMATICAL JOURNAL, 1959, 26 (01) :1-15
[6]  
Chen H., 2003, International Journal of Mathematical Education in Science and Technology, V34, P291, DOI [10.1080/0020739031000158335, DOI 10.1080/0020739031000158335]
[7]   The Zagier modification of Bernoulli numbers and a polynomial extension. Part I [J].
Dixit, Atul ;
Moll, Victor H. ;
Vignat, Christophe .
RAMANUJAN JOURNAL, 2014, 33 (03) :379-422
[8]  
Flajolet P., 2010, ANAL COMBINATORICS
[9]   Orthogonal polynomials and operator orderings [J].
Hamdi, Adel ;
Zeng, Jiang .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (04)
[10]  
Ismail M., 2005, Classical and quantum orthogonal polynomials in one variable, V13