Deeply Coupled Graph Structured Autoencoder for Domain Adaptation

被引:1
|
作者
Majumdar, Angshul [1 ]
机构
[1] IIIT Delhi, Okhla Phase 3, Delhi, India
来源
PROCEEDINGS OF THE 6TH ACM IKDD CODS AND 24TH COMAD | 2019年
关键词
graphical models; deep learning; representation learning; DICTIONARY;
D O I
10.1145/3297001.3297013
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This work introduced graph regularization to the framework of deep coupled autoencoders. The ensuing domain adaptation tool has been used on a variety of application areas - image super-resolution, translingual document retrieval and multimodal information retrieval. In each case, the proposed method outperforms other coupled representation learning formulations and application specific approaches.
引用
收藏
页码:94 / 102
页数:9
相关论文
共 50 条
  • [1] Graph structured autoencoder
    Majumdar, Angshul
    NEURAL NETWORKS, 2018, 106 : 271 - 280
  • [2] Invertible Autoencoder for Domain Adaptation
    Teng, Yunfei
    Choromanska, Anna
    COMPUTATION, 2019, 7 (02)
  • [3] Domain Adaptation Network Based on Autoencoder
    WANG Xuesong
    MA Yuting
    CHENG Yuhu
    ChineseJournalofElectronics, 2018, 27 (06) : 1258 - 1264
  • [4] Structured Domain Adaptation
    Li, Jingjing
    Wu, Yue
    Lu, Ke
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2017, 27 (08) : 1700 - 1713
  • [5] Domain Adaptation Network Based on Autoencoder
    Wang Xuesong
    Ma Yuting
    Cheng Yuhu
    CHINESE JOURNAL OF ELECTRONICS, 2018, 27 (06) : 1258 - 1264
  • [6] Heterogeneous domain adaptation network based on autoencoder
    Wang, Xuesong
    Ma, Yuting
    Cheng, Yuhu
    Zou, Liang
    Rodrigues, Joel J. P. C.
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2018, 117 : 281 - 291
  • [7] Domain Adaptation for Structured Regression
    Makoto Yamada
    Leonid Sigal
    Yi Chang
    International Journal of Computer Vision, 2014, 109 : 126 - 145
  • [8] Domain Adaptation for Structured Regression
    Yamada, Makoto
    Sigal, Leonid
    Chang, Yi
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2014, 109 (1-2) : 126 - 145
  • [9] Accurate Node Feature Estimation with Structured Variational Graph Autoencoder
    Yoo, Jaemin
    Jeon, Hyunsik
    Jung, Jinhong
    Kang, U.
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 2336 - 2346
  • [10] Bearing Fault Diagnosis via Graph Autoencoder Networks with Multi-kernel Subdomain Adversarial Domain Adaptation
    Guo, Junfeng
    Hu, Zeming
    Wang, Zhiming
    Zhang, Yushan
    JOURNAL OF FAILURE ANALYSIS AND PREVENTION, 2024, : 2831 - 2846