Phylogeny and structure of the cinnamyl alcohol dehydrogenase gene family in Brachypodium distachyon

被引:38
作者
Bukh, Christian [1 ]
Nord-Larsen, Pia Haugaard [1 ]
Rasmussen, Soren K. [1 ]
机构
[1] Univ Copenhagen, Dept Plant & Environm Sci, DK-1871 Frederiksberg C, Denmark
关键词
Brachypodium distachyon (Bd21-3); coniferyl aldehyde; Cinnamyl alcohol dehydrogenase (CAD); gene structure; lignocellulose; recalcitrance; signal peptide; MULTIPLE SEQUENCE ALIGNMENT; LIGNIN BIOSYNTHESIS; ARABIDOPSIS-THALIANA; DOWN-REGULATION; CLUSTAL-W; PURIFICATION; EXPRESSION; MAIZE; IMPROVEMENT; ISOFORMS;
D O I
10.1093/jxb/ers275
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Cinnamyl alcohol dehydrogenase (CAD) catalyses the final step of the monolignol biosynthesis, the conversion of cinnamyl aldehydes to alcohols, using NADPH as a cofactor. Seven members of the CAD gene family were identified in the genome of Brachypodium distachyon and five of these were isolated and cloned from genomic DNA. Semi-quantitative reverse-transcription PCR revealed differential expression of the cloned genes, with BdCAD5 being expressed in all tissues and highest in root and stem while BdCAD3 was only expressed in stem and spikes. A phylogenetic analysis of CAD-like proteins placed BdCAD5 on the same branch as bona fide CAD proteins from maize (ZmCAD2), rice (OsCAD2), sorghum (SbCAD2) and Arabidopsis (AtCAD4, 5). The predicted three-dimensional structures of both BdCAD3 and BdCAD5 resemble that of AtCAD5. However, the amino-acid residues in the substrate-binding domains of BdCAD3 and BdCAD5 are distributed symmetrically and BdCAD3 is similar to that of poplar sinapyl alcohol dehydrogenase (PotSAD). BdCAD3 and BdCAD5 expressed and purified from Escherichia coli both showed a temperature optimum of about 50 C and molar weight of 49kDa. The optimal pH for the reduction of coniferyl aldehyde were pH 5.2 and 6.2 and the pH for the oxidation of coniferyl alcohol were pH 8 and 9.5, for BdCAD3 and BdCAD5 respectively. Kinetic parameters for conversion of coniferyl aldehyde and coniferyl alcohol showed that BdCAD5 was clearly the most efficient enzyme of the two. These data suggest that BdCAD5 is the main CAD enzyme for lignin biosynthesis and that BdCAD3 has a different role in Brachypodium. All CAD enzymes are cytosolic except for BdCAD4, which has a putative chloroplast signal peptide adding to the diversity of CAD functions.
引用
收藏
页码:6223 / 6236
页数:14
相关论文
共 74 条
[1]   Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative [J].
Anisimova, Maria ;
Gascuel, Olivier .
SYSTEMATIC BIOLOGY, 2006, 55 (04) :539-552
[2]  
[Anonymous], 2011, R: A Language and Environment for Statistical Computing
[3]  
[Anonymous], BIOENER RES
[4]   Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity [J].
Anterola, AM ;
Lewis, NG .
PHYTOCHEMISTRY, 2002, 61 (03) :221-294
[5]   Phylogeny and expression profiling of CAD and CAD-like genes in hybrid Populus (P. deltoides x P. nigra): evidence from herbivore damage for subfunctionalization and functional divergence [J].
Barakat, Abdelali ;
Bagniewska-Zadworna, Agnieszka ;
Frost, Christopher J. ;
Carlson, John E. .
BMC PLANT BIOLOGY, 2010, 10
[6]   The cinnamyl alcohol dehydrogenase gene family in Populus: phylogeny, organization, and expression [J].
Barakat, Abdelali ;
Bagniewska-Zadworna, Agnieszka ;
Choi, Alex ;
Plakkat, Urmila ;
DiLoreto, Denis S. ;
Yellanki, Priyadarshini ;
Carlson, John E. .
BMC PLANT BIOLOGY, 2009, 9
[7]   Genetic and molecular basis of grass cell wall biosynthesis and degradability.: II.: Lessons from brown-midrib mutants [J].
Barrière, Y ;
Ralph, J ;
Méchin, V ;
Guillaumie, S ;
Grabber, JH ;
Argillier, O ;
Chabbert, B ;
Lapierre, C .
COMPTES RENDUS BIOLOGIES, 2004, 327 (9-10) :847-860
[8]   Sequence analysis and functional characterization of the promoter of the Picea glauca Cinnamyl Alcohol Dehydrogenase gene in transgenic white spruce plants [J].
Bedon, Frank ;
Levasseur, Caroline ;
Grima-Pettenati, Jacqueline ;
Seguin, Armand ;
MacKay, John .
PLANT CELL REPORTS, 2009, 28 (05) :787-800
[9]   Improved prediction of signal peptides: SignalP 3.0 [J].
Bendtsen, JD ;
Nielsen, H ;
von Heijne, G ;
Brunak, S .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 340 (04) :783-795
[10]   Lignin biosynthesis [J].
Boerjan, W ;
Ralph, J ;
Baucher, M .
ANNUAL REVIEW OF PLANT BIOLOGY, 2003, 54 :519-546