A MODIFIED QUASI-BOUNDARY VALUE METHOD FOR THE BACKWARD TIME-FRACTIONAL DIFFUSION PROBLEM

被引:80
作者
Wei, Ting [1 ]
Wang, Jun-Gang [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2014年 / 48卷 / 02期
关键词
Backward problem; fractional diffusion equation; modified quasi-boundary value method; convergence analysis; a priori parameter choice; morozov's discrepancy principle; PARABOLIC EQUATIONS BACKWARD; CAUCHY-PROBLEM; DIFFERENCE APPROXIMATION; REGULARIZATION METHOD; ANOMALOUS DIFFUSION; TRANSPORT;
D O I
10.1051/m2an/2013107
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a backward problem for a time-fractional diffusion equation with variable coefficients in a general bounded domain. That is to determine the initial data front a noisy final data. Based on a series expression of the solution, a conditional stability for the initial data is given. Further, we propose a modified quasi-boundary value regularization method to deal wall the backward problem and obtain two kinds of convergence rates by using an a priori regularization parameter choice rule and an a posteriori regularization parameter choice rule. Numerical examples in one-dimensional and two-dimensional cases are provided to show the effectiveness of the proposed methods.
引用
收藏
页码:603 / 621
页数:19
相关论文
共 44 条
[1]   Asymptotic behavior for two regularizations of the cauchy problem for the backward heat equation [J].
Ames, KA ;
Payne, LE .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1998, 8 (01) :187-202
[2]   A kernel-based method for the approximate solution of backward parabolic problems [J].
Ames, KA ;
Epperson, JF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (04) :1357-1390
[3]  
[Anonymous], 2006, MITTAG LEFFLER FUNCT
[4]  
[Anonymous], 2009, INVERSE PROBL
[5]   Anomalous transport in laboratory-scale, heterogeneous porous media [J].
Berkowitz, B ;
Scher, H ;
Silliman, SE .
WATER RESOURCES RESEARCH, 2000, 36 (01) :149-158
[6]   Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation [J].
Cheng, Jin ;
Nakagawa, Junichi ;
Yamamoto, Masahiro ;
Yamazaki, Tomohiro .
INVERSE PROBLEMS, 2009, 25 (11)
[7]   Numerical inversions of a source term in the FADE with a Dirichlet boundary condition using final observations [J].
Chi, Guangsheng ;
Li, Gongsheng ;
Jia, Xianzheng .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (04) :1619-1626
[8]  
Clark G W., 1994, Electron J Differential Equations, V1994, P1
[9]   A modified quasi-boundary value method for ill-posed problems [J].
Denche, M ;
Bessila, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 301 (02) :419-426
[10]   A non-local boundary value problem method for parabolic equations backward in time [J].
Dinh Nho Hao ;
Nguyen Van Duc ;
Sahli, Hichem .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (02) :805-815