Fast collocation methods for second kind integral equations

被引:76
作者
Chen, ZY [1 ]
Micchelli, CA
Xu, YS
机构
[1] Zhongshan Univ, Dept Sci Comp & Comp Applicat, Guangzhou 510275, Peoples R China
[2] SUNY Albany, Dept Math & Stat, Albany, NY 12222 USA
[3] W Virginia Univ, Dept Math, Morgantown, WV 26506 USA
[4] Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100080, Peoples R China
关键词
fast collocation methods; Fredholm integral equations of the second kind; refinable sets; multiscale interpolation;
D O I
10.1137/S0036142901389372
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we develop fast collocation methods for integral equations of the second kind with weakly singular kernels. For this purpose, we construct multiscale interpolating functions and collocation functionals having vanishing moments. Moreover, we propose a truncation strategy for the coefficient matrix of the corresponding discrete system which forms a basis for fast algorithms. An optimal order of convergence of the approximate solutions obtained from the fast algorithms is proved and the computational complexity of the algorithms is estimated. The stability of the numerical method and the condition number of the truncated coefficient matrix are analyzed.
引用
收藏
页码:344 / 375
页数:32
相关论文
共 23 条
[1]   A CLASS OF BASES IN L2 FOR THE SPARSE REPRESENTATION OF INTEGRAL-OPERATORS [J].
ALPERT, BK .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (01) :246-262
[2]  
Anselone P. M., 1971, Collectively compact operator approximation theory and applications to integral equations
[3]   PIECEWISE CONTINUOUS COLLOCATION FOR INTEGRAL-EQUATIONS [J].
ATKINSON, K ;
GRAHAM, I ;
SLOAN, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (01) :172-186
[4]   A fast matrix-vector multiplication method for solving the radiosity equation [J].
Atkinson, K ;
Chien, DDK .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2000, 12 (2-3) :151-174
[5]  
Atkinson K., 1998, J INTEGRAL EQUAT, V10, P253, DOI DOI 10.1216/JIEA/1181074231
[6]   PIECEWISE POLYNOMIAL COLLOCATION FOR BOUNDARY INTEGRAL-EQUATIONS [J].
ATKINSON, KE ;
CHIEN, D .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (03) :651-681
[7]  
ATKINSON KE, 1990, NUMERICAL SOLUTION I, P1
[8]  
Atkinson KE., 1996, NUMERICAL SOLUTION I
[9]   FAST WAVELET TRANSFORMS AND NUMERICAL ALGORITHMS .1. [J].
BEYLKIN, G ;
COIFMAN, R ;
ROKHLIN, V .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (02) :141-183
[10]   The Petrov-Galerkin method for second kind integral equations .2. Multiwavelet schemes [J].
Chen, ZY ;
Micchelli, CA ;
Xu, YS .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1997, 7 (03) :199-233